UM

Browse/Search Results:  1-10 of 21 Help

Selected(0)Clear Items/Page:    Sort:
Enhancing tourism demand forecasting with a transformer-based framework Journal article
Li, Xin, Xu, Yechi, Law, Rob, Wang, Shouyang. Enhancing tourism demand forecasting with a transformer-based framework[J]. Annals of Tourism Research, 2024, 107, 103791.
Authors:  Li, Xin;  Xu, Yechi;  Law, Rob;  Wang, Shouyang
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:10.4/11.2 | Submit date:2024/06/05
Temporal Fusion Transformer  Time Series Decomposition  Tourism Demand Forecasting  Tree-structured Parzen Estimator  
A Multi-Scale Residual Graph Convolution Network with hierarchical attention for predicting traffic flow in urban mobility Journal article
Ling, Jiahao, Lan, Yuanchun, Huang, Xiaohui, Yang, Xiaofei. A Multi-Scale Residual Graph Convolution Network with hierarchical attention for predicting traffic flow in urban mobility[J]. Complex and Intelligent Systems, 2024, 10(3), 3305-3317.
Authors:  Ling, Jiahao;  Lan, Yuanchun;  Huang, Xiaohui;  Yang, Xiaofei
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:5.0/5.2 | Submit date:2024/05/16
Multivariate Time Series  Periodicity  Spatial–temporal  Traffic Forecasting  
Combating Distribution Shift for Accurate Time Series Forecasting via Hypernetworks Conference paper
Duan,Wenying, He,Xiaoxi, Zhou,Lu, Thiele,Lothar, Rao,Hong. Combating Distribution Shift for Accurate Time Series Forecasting via Hypernetworks[C]. IEEE Comp Society; Nanjing Univ Posts & Telecommunicat:IEEE Computer Society, 2023, 900-907.
Authors:  Duan,Wenying;  He,Xiaoxi;  Zhou,Lu;  Thiele,Lothar;  Rao,Hong
Favorite | TC[WOS]:4 TC[Scopus]:6 | Submit date:2023/08/03
Distribution Shift  Hypernetworks  Time Series Forecasting  
Spatio-Temporal Graph Attention Network for Sintering Temperature Long-Range Forecasting in Rotary Kilns Journal article
Hua Chen, Yu Jiang, Xiaogang Zhang, Yicong Zhou, Lianhong Wang, Jinchao Wei. Spatio-Temporal Graph Attention Network for Sintering Temperature Long-Range Forecasting in Rotary Kilns[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2), 1923-1932.
Authors:  Hua Chen;  Yu Jiang;  Xiaogang Zhang;  Yicong Zhou;  Lianhong Wang; et al.
Favorite | TC[WOS]:13 TC[Scopus]:15  IF:11.7/11.4 | Submit date:2023/01/30
ForecastIng In Long-term Horizon  Multivariable Time Series  Sintering Temperature Forecasting  Spatio-temporal Graph Attention Network  
Trajectory Prediction Using Multivariate Time-series Data Stream Learning with Fused Kalman-filter and Evolving Correlated Horizons Feature Selection Conference paper
Li, Tengyue, Fong, Simon. Trajectory Prediction Using Multivariate Time-series Data Stream Learning with Fused Kalman-filter and Evolving Correlated Horizons Feature Selection[C], 2022, 663-670.
Authors:  Li, Tengyue;  Fong, Simon
Favorite | TC[Scopus]:0 | Submit date:2023/03/06
Data Analytics  Data Stream Mining  Kalman Filter  Multivariate Time Series Forecasting  Trajectory Prediction  
LSTM with particle Swam optimization for sales forecasting Journal article
He, Qi Qiao, Wu, Cuiyu, Si, Yain Whar. LSTM with particle Swam optimization for sales forecasting[J]. Electronic Commerce Research and Applications, 2022, 51.
Authors:  He, Qi Qiao;  Wu, Cuiyu;  Si, Yain Whar
Favorite | TC[WOS]:36 TC[Scopus]:49  IF:5.9/6.9 | Submit date:2022/02/21
E-commerce  Long Short-term Memory  Particle Swam Optimization  Sales Forecasting  Time Series  
Multivariate Time Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet Journal article
Zhang, X. G., Lei, Y. Y., Chen, H., Zhang, L., Zhou, Y. C.. Multivariate Time Series Modeling for Forecasting Sintering Temperature in Rotary Kilns Using DCGNet[J]. IEEE Transactions on Industrial Informatics, 2021, 4635-4645.
Authors:  Zhang, X. G.;  Lei, Y. Y.;  Chen, H.;  Zhang, L.;  Zhou, Y. C.
Favorite | TC[WOS]:32 TC[Scopus]:41 | Submit date:2022/07/09
Temperature Forecasting  Multivariate Time Series  Convolutional Neural Network  Gated Recurrent Unit Network  
Multi-source transfer learning with ensemble for financial time series forecasting Conference paper
Qi-Qiao He, Patrick Cheong-Iao Pang, Yain-Whar Si. Multi-source transfer learning with ensemble for financial time series forecasting[C]:IEEE, 2020, 227-233.
Authors:  Qi-Qiao He;  Patrick Cheong-Iao Pang;  Yain-Whar Si
Favorite | TC[WOS]:6 TC[Scopus]:8 | Submit date:2021/12/06
Artificial Neural Networks  Financial Time Series Forecasting  Multi-source Transfer Learning  
An estimating combination method for interval forecasting of electrical load time series Journal article
Ma, Xuejiao, Dong, Yunxuan. An estimating combination method for interval forecasting of electrical load time series[J]. Expert Systems with Applications, 2020, 158.
Authors:  Ma, Xuejiao;  Dong, Yunxuan
Favorite | TC[WOS]:19 TC[Scopus]:21  IF:7.5/7.6 | Submit date:2021/12/06
Distribution Estimation  Electrical Load Time Series  Feature Selection  Interval Forecasting  Machine Learning Method  
Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts Journal article
Ahmad, Tanveer, Zhang, Hongcai. Novel deep supervised ML models with feature selection approach for large-scale utilities and buildings short and medium-term load requirement forecasts[J]. Energy, 2020, 209, 118477.
Authors:  Ahmad, Tanveer;  Zhang, Hongcai
Favorite | TC[WOS]:27 TC[Scopus]:33  IF:9.0/8.2 | Submit date:2021/09/09
Deep Supervised Learning Models  Multiple Feature Selection  Short & Medium-term Forecasting  Time Series  Utilities And Building Load