UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
A 5T-SRAM Based Computing-in-Memory Macro Featuring Partial Sum Boosting and Analog Non-Uniform Quantization Conference paper
Xin, Guoqiang, Tan, Fei, Li, Junde, Chen, Junren, Yu, Wei Han, Un, Ka Fai, Martins, Rui P., Mak, Pui In. A 5T-SRAM Based Computing-in-Memory Macro Featuring Partial Sum Boosting and Analog Non-Uniform Quantization[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 882-887.
Authors:  Xin, Guoqiang;  Tan, Fei;  Li, Junde;  Chen, Junren;  Yu, Wei Han; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/10/10
5t-sram  Analog Non-uniform Quantization (Anuq)  Computing-in-memory (Clm)  Machine Learning (Ml)  Matrix-vector Multiplication (Mvm)  Partial Sum Boosting (Psb)  
Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation Journal article
Tan, Xiaorong, Liu, Qianhui, Fang, Yanpeng, Zhu, Yingli, Chen, Fei, Zeng, Wenbin, Ouyang, Defang, Dong, Jie. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation[J]. Molecular Pharmaceutics, 2024, 21(8), 4116-4127.
Authors:  Tan, Xiaorong;  Liu, Qianhui;  Fang, Yanpeng;  Zhu, Yingli;  Chen, Fei; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.5/4.6 | Submit date:2024/08/05
Cell Permeability  Drug Delivery  Graph Neural Network  Machine Learning  Peptide  Permeability Prediction  
A 1.8% FAR, 2 ms Decision Latency, 1.73 nJ/Decision Keywords-Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-IF-Domain Computing and Scalable 5T-SRAM Journal article
TAN FEI, YU WEI HAN, LIN JINHAI, UN KA FAI, RUI P. MARTINS, MAK PUI IN. A 1.8% FAR, 2 ms Decision Latency, 1.73 nJ/Decision Keywords-Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-IF-Domain Computing and Scalable 5T-SRAM[J]. IEEE Journal of Solid State Circuits, 2024.
Authors:  TAN FEI;  YU WEI HAN;  LIN JINHAI;  UN KA FAI;  RUI P. MARTINS; et al.
Favorite |  | Submit date:2024/08/19
Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs Journal article
Tan, Xiaorong, Liu, Qianhui, Fang, Yanpeng, Yang, Sen, Chen, Fei, Wang, Jianmin, Ouyang, Defang, Dong, Jie, Zeng, Wenbin. Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs[J]. Briefings in Bioinformatics, 2024, 25(4), bbae350.
Authors:  Tan, Xiaorong;  Liu, Qianhui;  Fang, Yanpeng;  Yang, Sen;  Chen, Fei; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:6.8/7.9 | Submit date:2024/08/05
Drug Design  Enzymatic Cleavage Features  Half-life  Machine Learning  Peptide Drugs  Transfer Learning  
A 1.8% FAR, 2ms Decision Latency, 1.73nJ/Decision Keywords Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-Domain Computing and Scalable 5T-SRAM Conference paper
TAN FEI, YU WEI HAN, LIN JINHAI, UN KA FAI, RUI P. MARTINS, MAK PUI IN. A 1.8% FAR, 2ms Decision Latency, 1.73nJ/Decision Keywords Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-Domain Computing and Scalable 5T-SRAM[C], 2024.
Authors:  TAN FEI;  YU WEI HAN;  LIN JINHAI;  UN KA FAI;  RUI P. MARTINS; et al.
Favorite |  | Submit date:2024/08/19
17.9 A 1.8% FAR, 2ms Decision Latency, 1.73nJ/Decision Keywords Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-Domain Computing and Scalable 5T-SRAM Conference paper
Tan, Fei, Yu, Wei Han, Lin, Jinhai, Un, Ka Fai, Martins, Rui P., Mak, Pui In. 17.9 A 1.8% FAR, 2ms Decision Latency, 1.73nJ/Decision Keywords Spotting (KWS) Chip Incorporating Transfer-Computing Speaker Verification, Hybrid-Domain Computing and Scalable 5T-SRAM[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 330-332.
Authors:  Tan, Fei;  Yu, Wei Han;  Lin, Jinhai;  Un, Ka Fai;  Martins, Rui P.; et al.
Favorite | TC[Scopus]:1 | Submit date:2024/05/16
Computational Modeling  User Experience  Hardware  Computational Efficiency  Solid State Circuits  
A 0.05mm2- 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS Journal article
Tan, Fei, Yu, Wei Han, Un, Ka Fai, Martins, Rui P., Mak, Pui In. A 0.05mm2- 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS[J]. IEEE Journal of Solid State Circuits, 2023.
Authors:  Tan, Fei;  Yu, Wei Han;  Un, Ka Fai;  Martins, Rui P.;  Mak, Pui In
Favorite |  | Submit date:2023/08/03
A 0.05- mm2 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS Journal article
Tan, Fei, Yu, Wei-Han, Un, Ka-Fai, Martins, Rui, Mak, Pui-In. A 0.05- mm2 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS[J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2023.
Authors:  Tan, Fei;  Yu, Wei-Han;  Un, Ka-Fai;  Martins, Rui;  Mak, Pui-In
Favorite |   IF:4.6/5.6 | Submit date:2023/08/02
A 0.05-mm2 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS Journal article
Tan,Fei, Yu,Wei Han, Un,Ka Fai, Martins,Rui P., Mak,Pui In. A 0.05-mm2 2.91-nJ/Decision Keyword-Spotting (KWS) Chip Featuring an Always-Retention 5T-SRAM in 28-nm CMOS[J]. IEEE Journal of Solid-State Circuits, 2023, 59(2), 626-635.
Authors:  Tan,Fei;  Yu,Wei Han;  Un,Ka Fai;  Martins,Rui P.;  Mak,Pui In
Favorite | TC[WOS]:8 TC[Scopus]:6  IF:4.6/5.6 | Submit date:2023/08/03
5t-sram  Convolutional Neural Network (Cnn)  Input Stationery  Keyword Spotting (Kws)  Low-leakage Memory  Quantization  Switched-capacitor Circuits  
NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results Conference paper
Li, Yawei, Zhang, Kai, Timofte, Radu, Van Gool, Luc, Kong, Fangyuan, Li, Mingxi, Liu, Songwei, Du, Zongcai, Liu, Ding, Zhou, Chenhui, Chen, Jingyi, Han, Qingrui, Li, Zheyuan, Liu, Yingqi, Chen, Xiangyu, Cai, Haoming, Qiao, Yu, Dong, Chao, Sun, Long, Pan, Jinshan, Zhu, Yi, Zong, Zhikai, Liu, Xiaoxiao, Hui, Zheng, Yang, Tao, Ren, Peiran, Xie, Xuansong, Hua, Xian Sheng, Wang, Yanbo, Ji, Xiaozhong, Lin, Chuming, Luo, Donghao, Tai, Ying, Wang, Chengjie, Zhang, Zhizhong, Xie, Yuan, Cheng, Shen, Luo, Ziwei, Yu, Lei, Wen, Zhihong, Wul, Qi, Li, Youwei, Fan, Haoqiang, Sun, Jian, Liu, Shuaicheng, Huang, Yuanfei, Jin, Meiguang, Huang, Hua, Liu, Jing, Zhang, Xinjian, Wang, Yan, Long, Lingshun, Kong, Lingshun, Li, Gen, Zhang, Yuanfan, Cao, Zuowei, Sun, Lei, Alexander, Panaetov, Wang, Yucong, Zhang, Shuhao, Zhang, Yuhao, Cai, Minjie, Wang, Li, Tian, Lu, Wang, Zheyuan, Ma, Hongbing, Liu, Jie, Chen, Chao, Cai, Yidong, Tang, Jie, Wu, Gangshan, Wang, Weiran, Huang, Shirui, Lu, Honglei, Liu, Huan, Wang, Keyan, Chen, Jun, Chen, Shi, Miao, Yuchun, Huang, Zimo, Zhang, Lefei, Ayazoglu, Mustafa, Xiong, Wei, Xiong, Chengyi, Wang, Fei, Li, Hao, Wen, Ruimian, Yang, Zhijing, Zou, Wenbin, Zheng, Weixin, Ye, Tian, Zhang, Yuncheng, Kong, Xiangzhen, Arora, Aditya, Zamir, Syed Waqas, Khan, Salman, Hayat, Munawar, Khan, Fahad Shahbaz, Gao, Dandan, Zhou, Dengwen, Ning, Qian, Tang, Jingzhu, Huang, Han, Wang, Yufei, Peng, Zhangheng, Li, Haobo, Guan, Wenxue, Gong, Shenghua, Li, Xin, Liu, Jun, Wang, Wanjun, Zhou, Dengwen, Zeng, Kun, Lin, Hanjiang, Chen, Xinyu, Fang, Jinsheng, Sinha, Abhishek Kumar, Moorthi, S. Manthira, Dhar, Debajyoti, Yang, Hao Hsiang, Huang, Zhi Kai, Chen, Wei Ting, Chang, Hua En, Kuo, Sy Yen, Tan, Wei, Chen, Hao, Narang, Pratik, Yinghua, Liu, Tianlin, Zhang, Xiaoming, Zhang, Meng, Dingxuan, Tian, Chunwei, Morshed, Mashrur M., Ahsan, Ahmad Omar. NTIRE 2022 Challenge on Efficient Super-Resolution: Methods and Results[C], 2022, 1061-1101.
Authors:  Li, Yawei;  Zhang, Kai;  Timofte, Radu;  Van Gool, Luc;  Kong, Fangyuan; et al.
Favorite | TC[WOS]:22 TC[Scopus]:73 | Submit date:2023/01/30
Measurement  Runtime  Convolution  Conferences  Superresolution  Memory Management  Graphics Processing Units