UM

Browse/Search Results:  1-10 of 23 Help

Selected(0)Clear Items/Page:    Sort:
The impact of seawater ions on urea decomposition and calcium carbonate precipitation in the MICP process Journal article
Fan, Qi, Fan, Liang, Quach, Wai Meng, Duan, Jizhou. The impact of seawater ions on urea decomposition and calcium carbonate precipitation in the MICP process[J]. Cement and Concrete Composites, 2024, 152, 105631.
Authors:  Fan, Qi;  Fan, Liang;  Quach, Wai Meng;  Duan, Jizhou
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:10.8/11.2 | Submit date:2024/07/04
Crack Repair  Marine Environment  Micp  Permeability Coefficient  Salt-tolerant Strain  
CrackFormer Network for Pavement Crack Segmentation Journal article
Liu, Huajun, Yang, Jing, Miao, Xianyu, Mertz, Christoph, Kong, Hui. CrackFormer Network for Pavement Crack Segmentation[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(9), 9240 - 9252.
Authors:  Liu, Huajun;  Yang, Jing;  Miao, Xianyu;  Mertz, Christoph;  Kong, Hui
Favorite | TC[WOS]:25 TC[Scopus]:30  IF:7.9/8.3 | Submit date:2023/07/30
Automatic Crack Segmentation  Segnet  Convnet  Transformer  Crackformer  
A recycling preconditioning method with auxiliary tip subspace for elastic crack propagation simulation using XFEM Journal article
Chen, Xingding, Cai, Xiao Chuan. A recycling preconditioning method with auxiliary tip subspace for elastic crack propagation simulation using XFEM[J]. Journal of Computational Physics, 2022, 452(110910).
Authors:  Chen, Xingding;  Cai, Xiao Chuan
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:3.8/4.5 | Submit date:2022/03/28
Extended Finite Element Method  Domain Decomposition Preconditioners  Sequence Of Linear Systems  Crack Propagation  Auxiliary Tip Subspace  
Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network Journal article
Li, D., Wang, Y., Yan, W., Ren, W.X.. Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network[J]. Structural Health Monitoring, 2021, 20(4), 1563-1582.
Authors:  Li, D.;  Wang, Y.;  Yan, W.;  Ren, W.X.
Favorite | TC[WOS]:68 TC[Scopus]:70  IF:5.7/6.8 | Submit date:2022/08/21
Rail  Crack Monitoring  Acoustic Emission  Classification  Synchrosqueezed Wavelet Transform  Multi-branch Convolutional Neural Network  
Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network Journal article
Dan Li, Yang Wang, Wang Ji Yan, Wei Xin Ren. Acoustic emission wave classification for rail crack monitoring based on synchrosqueezed wavelet transform and multi-branch convolutional neural network[J]. Structural Health Monitoring, 2021, 20(4), 1563-1582.
Authors:  Dan Li;  Yang Wang;  Wang Ji Yan;  Wei Xin Ren
Favorite | TC[WOS]:68 TC[Scopus]:70  IF:5.7/6.8 | Submit date:2021/03/11
Rail  Crack Monitoring  Acoustic Emission  Classification  Synchrosqueezed Wavelet Transform  Multi-branch Convolutional Neural Network  
Deep learning-based crack identification for steel pipelines by extracting features from 3d shadow modeling Journal article
Altabey, Wael A., Noori, Mohammad, Wang, Tianyu, Ghiasi, Ramin, Wu, Zhishen. Deep learning-based crack identification for steel pipelines by extracting features from 3d shadow modeling[J]. Applied Sciences (Switzerland), 2021, 11(13), 6063.
Authors:  Altabey, Wael A.;  Noori, Mohammad;  Wang, Tianyu;  Ghiasi, Ramin;  Wu, Zhishen
Favorite | TC[WOS]:18 TC[Scopus]:28  IF:2.5/2.7 | Submit date:2021/12/08
3d Shadow Modeling  Automatic Crack Identification  Convolutional Neural Network (Cnn)  Deep Learning  Structural Health Monitoring (Shm)  
Deep Learning-Based Crack Identification for Steel Pipelines by Extracting Features from 3D Shadow Modeling Journal article
Altabey, W. A., Noori, M., Wang, T., Ghiasi, R.. Deep Learning-Based Crack Identification for Steel Pipelines by Extracting Features from 3D Shadow Modeling[J]. Applied Sciences, 2021, 1-21.
Authors:  Altabey, W. A.;  Noori, M.;  Wang, T.;  Ghiasi, R.
Favorite |   IF:2.5/2.7 | Submit date:2022/08/30
Deep Learning  Automatic Crack Identification  Convolutional Neural Network (Cnn)  3d Shadow Modeling  Structural Health Monitoring (Shm)  
Crack propagation analysis of 3D printed functionally graded titanium alloy components Journal article
Cao, J, Kou, K. P., Lam, C. C.. Crack propagation analysis of 3D printed functionally graded titanium alloy components[J]. Theoretical and Applied Fracture Mechanics, 2021, 111.
Authors:  Cao, J;  Kou, K. P.;  Lam, C. C.
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:5.0/4.6 | Submit date:2022/08/06
Functionally Graded Titanium Alloy  M-integral  Crack Propagation  3d Printing Technique  Paris Law  
Crack propagation analysis of 3D printed functionally graded titanium alloy components Journal article
Cao,Jinlong, Kou,Kunpang, Lam,Chichiu. Crack propagation analysis of 3D printed functionally graded titanium alloy components[J]. Theoretical and Applied Fracture Mechanics, 2021, 111.
Authors:  Cao,Jinlong;  Kou,Kunpang;  Lam,Chichiu
Favorite | TC[WOS]:9 TC[Scopus]:10  IF:5.0/4.6 | Submit date:2021/03/11
3d Printing Technique  Crack Propagation  Functionally Graded Titanium Alloy  M-integral  Paris Law  
Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method Journal article
Xingding Chen, Xiao-Chuan Cai. Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method[J]. Communications in Computational Physics, 2020, 28(4), 1561-1584.
Authors:  Xingding Chen;  Xiao-Chuan Cai
Favorite | TC[WOS]:4 TC[Scopus]:7  IF:2.6/2.9 | Submit date:2021/03/09
Domain Decomposition  Elastic Crack Problem  Extended Finite Element Method  Non-matching Grid  Two-level Preconditioners