UM  > Faculty of Science and Technology  > DEPARTMENT OF MATHEMATICS
Residential Collegefalse
Status已發表Published
Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method
Xingding Chen1; Xiao-Chuan Cai2
2020-08-01
Source PublicationCommunications in Computational Physics
ISSN1815-2406
Volume28Issue:4Pages:1561-1584
Abstract

In this paper, we propose some effective one- and two-level domain decomposition preconditioners for elastic crack problems modeled by extended finite element method. To construct the preconditioners, the physical domain is decomposed into the “crack tip” subdomain, which contains all the degrees of freedom (dofs) of the branch enrichment functions, and the “regular” subdomains, which contain the standard dofs and the dofs of the Heaviside enrichment function. In the one-level additive Schwarz and restricted additive Schwarz preconditioners, the “crack tip” subproblem is solved directly and the “regular” subproblems are solved by some inexact solvers, such as ILU. In the two-level domain decomposition preconditioners, traditional interpolations between the coarse and the fine meshes destroy the good convergence property. Therefore, we propose an unconventional approach in which the coarse mesh is exactly the same as the fine mesh along the crack line, and adopt the technique of a non-matching grid interpolation between the fine and the coarse meshes. Numerical experiments demonstrate the effectiveness of the two-level domain decomposition preconditioners applied to elastic crack problems.

KeywordDomain Decomposition Elastic Crack Problem Extended Finite Element Method Non-matching Grid Two-level Preconditioners
DOI10.4208/CICP.OA-2020-0009
URLView the original
Indexed BySCIE
Language英語English
WOS Research AreaPhysics
WOS SubjectPhysics, Mathematical
WOS IDWOS:000569090400013
PublisherGLOBAL SCIENCE PRESS
Scopus ID2-s2.0-85090904264
Fulltext Access
Citation statistics
Document TypeJournal article
CollectionDEPARTMENT OF MATHEMATICS
Faculty of Science and Technology
Corresponding AuthorXingding Chen
Affiliation1.School of Mathematics and Statistics,Beijing Technology and Business University,Beijing,100048,China
2.Department of Mathematics,University of Macau,Macau,Macao
Recommended Citation
GB/T 7714
Xingding Chen,Xiao-Chuan Cai. Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method[J]. Communications in Computational Physics, 2020, 28(4), 1561-1584.
APA Xingding Chen., & Xiao-Chuan Cai (2020). Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method. Communications in Computational Physics, 28(4), 1561-1584.
MLA Xingding Chen,et al."Effective Two-Level Domain Decomposition Preconditioners for Elastic Crack Problems Modeled by Extended Finite Element Method".Communications in Computational Physics 28.4(2020):1561-1584.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Xingding Chen]'s Articles
[Xiao-Chuan Cai]'s Articles
Baidu academic
Similar articles in Baidu academic
[Xingding Chen]'s Articles
[Xiao-Chuan Cai]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Xingding Chen]'s Articles
[Xiao-Chuan Cai]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.