UM

Browse/Search Results:  1-10 of 56 Help

Selected(0)Clear Items/Page:    Sort:
Tide level prediction during typhoons based on variable topology in graph convolution recurrent neural networks Journal article
Shi, Xianwu, Chen, Peng, Ye, Zuchao, Zhang, Xinlong, Wang, Weiping. Tide level prediction during typhoons based on variable topology in graph convolution recurrent neural networks[J]. Ocean Engineering, 2024, 312, 119228.
Authors:  Shi, Xianwu;  Chen, Peng;  Ye, Zuchao;  Zhang, Xinlong;  Wang, Weiping
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.6/4.8 | Submit date:2024/10/10
Graph Convolutional Recurrent Network  Network Topology  Regional Multi-station Forecast  Tide Level Prediction  
FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction Conference paper
Yang, Linghua, Chen, Wantong, He, Xiaoxi, Wei, Shuyue, Xu, Yi, Zhou, Zimu, Tong, Yongxin. FedGTP: Exploiting Inter-Client Spatial Dependency in Federated Graph-based Traffic Prediction[C], New York, NY, USA:Association for Computing Machinery, 2024, 6105–6116.
Authors:  Yang, Linghua;  Chen, Wantong;  He, Xiaoxi;  Wei, Shuyue;  Xu, Yi; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/09/11
Federated Learning  Traffic Prediction  Spatial-temporal Graph Neural Network  
Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation Journal article
Tan, Xiaorong, Liu, Qianhui, Fang, Yanpeng, Zhu, Yingli, Chen, Fei, Zeng, Wenbin, Ouyang, Defang, Dong, Jie. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation[J]. Molecular Pharmaceutics, 2024, 21(8), 4116-4127.
Authors:  Tan, Xiaorong;  Liu, Qianhui;  Fang, Yanpeng;  Zhu, Yingli;  Chen, Fei; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.5/4.6 | Submit date:2024/08/05
Cell Permeability  Drug Delivery  Graph Neural Network  Machine Learning  Peptide  Permeability Prediction  
Multimodal Covariance Network Reflects Individual Cognitive Flexibility Journal article
Jiang, Lin, Eickhoff, Simon B., Genon, Sarah, Wang, Guangying, Yi, Chanlin, He, Runyang, Huang, Xunan, Yao, Dezhong, Dong, Debo, Li, Fali, Xu, Peng. Multimodal Covariance Network Reflects Individual Cognitive Flexibility[J]. International Journal of Neural Systems, 2024, 34(4), 2450018.
Authors:  Jiang, Lin;  Eickhoff, Simon B.;  Genon, Sarah;  Wang, Guangying;  Yi, Chanlin; et al.
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:6.6/5.0 | Submit date:2024/05/02
Cognitive Flexibility  Eeg-mri  Multimodal Covariance Network  Response Prediction  Trail-making Test  
Resisting the Edge-Type Disturbance for Link Prediction in Heterogeneous Networks Journal article
Wang, Huan, Liu, Ruigang, Shi, Chuanqi, Chen, Junyang, Fang, Lei, Liu, Shun, Gong, Zhiguo. Resisting the Edge-Type Disturbance for Link Prediction in Heterogeneous Networks[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 18(2).
Authors:  Wang, Huan;  Liu, Ruigang;  Shi, Chuanqi;  Chen, Junyang;  Fang, Lei; et al.
Favorite | TC[WOS]:1 TC[Scopus]:3  IF:4.0/3.9 | Submit date:2024/01/10
Edge-type Disturbance  Heterogeneous Network  Link Prediction  
P3 ViT: A CIM-Based High-Utilization Architecture With Dynamic Pruning and Two-Way Ping-Pong Macro for Vision Transformer Journal article
Fu, Xiangqu, Ren, Qirui, Wu, Hao, Xiang, Feibin, Luo, Qing, Yue, Jinshan, Chen, Yong, Zhang, Feng. P3 ViT: A CIM-Based High-Utilization Architecture With Dynamic Pruning and Two-Way Ping-Pong Macro for Vision Transformer[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(12), 4938-4948.
Authors:  Fu, Xiangqu;  Ren, Qirui;  Wu, Hao;  Xiang, Feibin;  Luo, Qing; et al.
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:5.2/4.5 | Submit date:2024/02/22
Accelerator  Cmos  Computing-in-memory (Cim)  Dynamic Prune  Prediction Network  Vision Transformer (Vit)  
Energy Efficiency Prediction Model of Suction Hopper Dredger Based on Correlation Analysis and Convolutional Neural Network Conference paper
Zhang, Jinyue, Chen, Liheng, Qin, Daqing. Energy Efficiency Prediction Model of Suction Hopper Dredger Based on Correlation Analysis and Convolutional Neural Network[C], 2023, 216-221.
Authors:  Zhang, Jinyue;  Chen, Liheng;  Qin, Daqing
Favorite | TC[Scopus]:0 | Submit date:2024/02/22
Convolutional Neural Network  Correlation Analysis  Efficiency Prediction  Suction Hopper Dredger  
Multi-view dynamic graph convolution neural network for traffic flow prediction Journal article
Huang,Xiaohui, Ye,Yuming, Yang,Xiaofei, Xiong,Liyan. Multi-view dynamic graph convolution neural network for traffic flow prediction[J]. Expert Systems with Applications, 2023, 222, 119779.
Authors:  Huang,Xiaohui;  Ye,Yuming;  Yang,Xiaofei;  Xiong,Liyan
Favorite | TC[WOS]:25 TC[Scopus]:27  IF:7.5/7.6 | Submit date:2023/08/03
Dynamic Fusion  Graph Convolution Network  Multi-view Encoder–decoders  Traffic Flow Prediction  
STGlow: A Flow-Based Generative Framework With Dual-Graphormer for Pedestrian Trajectory Prediction Journal article
Rongqin Liang, Yuanman Li, Jiantao Zhou, Xia Li. STGlow: A Flow-Based Generative Framework With Dual-Graphormer for Pedestrian Trajectory Prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023.
Authors:  Rongqin Liang;  Yuanman Li;  Jiantao Zhou;  Xia Li
Favorite | TC[WOS]:4 TC[Scopus]:9  IF:10.2/10.4 | Submit date:2023/08/28
Attention Mechanism  Deep Neural Network  Generative Flow  Graph Learning  Trajectory Prediction  
Deep-learning-based survival prediction of patients with cutaneous malignant melanoma Journal article
Yu, Hai, Yang, Wei, Wu, Shi, Xi, Shaohui, Xia, Xichun, Zhao, Qi, Ming, Wai Kit, Wu, Lifang, Hu, Yunfeng, Deng, Liehua, Lyu, Jun. Deep-learning-based survival prediction of patients with cutaneous malignant melanoma[J]. Frontiers in Medicine, 2023, 10, 1165865.
Authors:  Yu, Hai;  Yang, Wei;  Wu, Shi;  Xi, Shaohui;  Xia, Xichun; et al.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:3.1/3.4 | Submit date:2023/08/03
Deepsurv  Cutaneous Malignant Melanoma  Neural Network  Survival Prediction  Seer