UM

Browse/Search Results:  1-10 of 18 Help

Selected(0)Clear Items/Page:    Sort:
Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal Journal article
K.M. Mok, A.I. Miranda, K.V. Yuen, K.I. Hoi, A. Monteiro, I. Ribeiro. Selection of bias correction models for improving the daily PM10 forecasts of WRF-EURAD in Porto, Portugal[J]. ATMOSPHERIC POLLUTION RESEARCH, 2017, 8(4), 628-639.
Authors:  K.M. Mok;  A.I. Miranda;  K.V. Yuen;  K.I. Hoi;  A. Monteiro; et al.
Favorite | TC[WOS]:11 TC[Scopus]:12  IF:3.9/4.0 | Submit date:2018/10/30
Bayesian  Bias Correction  Model Selection  Pm10  Porto  
Comparison of the offline and the online bias correction of the WRF-EURAD in Porto, Portugal Conference paper
Hoi, K.I., Yuen, K.V., Mok, K.M., Miranda, A.I., Ribeiro, I.. Comparison of the offline and the online bias correction of the WRF-EURAD in Porto, Portugal[C], 2016.
Authors:  ; et al.
Favorite |  | Submit date:2019/05/28
Bias Correction  Kalman Filter  Pm10  Portugal  Wrf-eurad  
Selection of the daily PM10 forecasting model for an urban area in the northern region of Portugal with the Bayesian approach Conference paper
Hoi, K. I., Yuen, K. V., Mok, K. M., Miranda, A. I., Lai, K. U.. Selection of the daily PM10 forecasting model for an urban area in the northern region of Portugal with the Bayesian approach[C], 2014.
Authors:  Hoi, K. I.;  Yuen, K. V.;  Mok, K. M.;  Miranda, A. I.;  Lai, K. U.
Favorite |  | Submit date:2022/07/27
Bayesian  Forecast  PM10  Portugal  
Predicting minority class for suspended particulate matters level by extreme learning machine Journal article
Vong, C. M., Ip, W. F., Wong, P.K., Chiu, C. C.. Predicting minority class for suspended particulate matters level by extreme learning machine[J]. Neurocomputing (SCI-E), 2014, 136-144.
Authors:  Vong, C. M.;  Ip, W. F.;  Wong, P.K.;  Chiu, C. C.
Favorite |   IF:5.5/5.5 | Submit date:2022/08/09
PM10  Extreme learning machine (ELM)  Support vector machine (SVM)  imbalance problem  prior duplication  
Predicting minority class for suspended particulate matters level by extreme learning machine Journal article
Vong, C.-M., Ip, W.-F., Wong, Pak Kin, Chiu, C.-C.. Predicting minority class for suspended particulate matters level by extreme learning machine[J]. Neurocomputing, 2014, 128, 136.
Authors:  Vong, C.-M.;  Ip, W.-F.;  Wong, Pak Kin;  Chiu, C.-C.
Favorite | TC[WOS]:44 TC[Scopus]:52 | Submit date:2018/10/30
Extreme Learning Machine (Elm)  Imbalance Problem  Pm10  Prior Duplication  Support Vector Machine (Svm)  
Improvement of the multilayer perceptron for air quality modelling through an adaptive learning scheme Journal article
K.I. Hoi, K.V. Yuen, K.M. Mok. Improvement of the multilayer perceptron for air quality modelling through an adaptive learning scheme[J]. Computers and Geosciences, 2013, 59, 148-155.
Authors:  K.I. Hoi;  K.V. Yuen;  K.M. Mok
Favorite | TC[WOS]:13 TC[Scopus]:18  IF:4.2/4.4 | Submit date:2018/10/30
Extended Kalman Filter  Multilayer Perceptron  Pm10  Time-varying Multilayer Perceptron  
Transforming the WPS measurements from a mobile monitoring platform into PM10 mass concentrations for city air quality assessment Conference paper
Pun, M. H., Hoi, K. I., Mok, K. M., Yuen, K. V., Cheng, A. Y. S., Visue, A., Vong, M. H.. Transforming the WPS measurements from a mobile monitoring platform into PM10 mass concentrations for city air quality assessment[C], Boston:UEP2010, 2010, 48-48.
Authors:  Pun, M. H.;  Hoi, K. I.;  Mok, K. M.;  Yuen, K. V.;  Cheng, A. Y. S.; et al.
Favorite |  | Submit date:2022/07/27
Macau  Mobile Monitoring Platform  PM10  Wide-range Particle Spectrometer  
Is a complex neural network based air quality prediction model better than a simple one? A Bayesian point of view Conference paper
K. I. Hoi, K. V. Yuen, K. M. Mok. Is a complex neural network based air quality prediction model better than a simple one? A Bayesian point of view[C]:AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA, 2010, 764-769.
Authors:  K. I. Hoi;  K. V. Yuen;  K. M. Mok
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/12
Air Quality Prediction  Artificial Neural Network  Bayesian Approach  Macau  Pm10  
Optimizing the performance of kalman filter based statistical time-varying air quality models Conference paper
K.I. HOI, K.V. YUEN, K.M. MOK. Optimizing the performance of kalman filter based statistical time-varying air quality models[C]:GLOBAL NETWORK ENVIRONMENTAL SCIENCE & TECHNOLOGY, 30 VOULGAROKTONOU STR, ATHENS, GR 114 72, GREECE, 2010, 27-39.
Authors:  K.I. HOI;  K.V. YUEN;  K.M. MOK
Favorite | TC[WOS]:5 TC[Scopus]:7 | Submit date:2019/02/12
Bayesian Inference  Kalman Filter  Macau  Pm10  Time-varying Models  
Prediction of daily averaged PM10 concentrations by statistical time-varying model Journal article
K.I. Hoi, K.V. Yuen, K.M. Mok. Prediction of daily averaged PM10 concentrations by statistical time-varying model[J]. Atmospheric Environment, 2009, 43(16), 2579-2581.
Authors:  K.I. Hoi;  K.V. Yuen;  K.M. Mok
Favorite | TC[WOS]:42 TC[Scopus]:47  IF:4.2/4.4 | Submit date:2018/10/30
Air Quality Prediction  Artificial Neural Network  Kalman Filter  Coastal City  Macau  Pm10