UM

Browse/Search Results:  1-10 of 38 Help

Selected(0)Clear Items/Page:    Sort:
Integrated computer-aided formulation design: A case study of andrographolide/ cyclodextrin ternary formulation Journal article
Gao, H., Su, Y, Wang, W., Xiong, W., Sun, X., Ji, Y., Yu, H., Li, H.-F., Ouyang, D.. Integrated computer-aided formulation design: A case study of andrographolide/ cyclodextrin ternary formulation[J]. Asian Journal of Pharmaceutical Sciences, 2021, XXX-XXX.
Authors:  Gao, H.;  Su, Y;  Wang, W.;  Xiong, W.;  Sun, X.; et al.
Favorite |   IF:10.7/9.0 | Submit date:2022/08/11
computer-aided  formulation design  andrographolide/cyclodextrin  
Improvement on hydrogen generation properties of Zr(BH4)4·8NH3 Journal article
Wu,D. F., Ouyang,L. Z., Huang,J. M., Liu,J. W., Wang,H., Yang,X. S., Shao,H., Zhu,M.. Improvement on hydrogen generation properties of Zr(BH4)4·8NH3[J]. PROGRESS IN NATURAL SCIENCE, 2021, 31(1), 41-46.
Authors:  Wu,D. F.;  Ouyang,L. Z.;  Huang,J. M.;  Liu,J. W.;  Wang,H.; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:4.8/5.3 | Submit date:2021/03/11
Ammonia Coordination Number  Hydrogen Production  Hydrolysis Properties  Zr(Bh4)4·8nh3  
Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide Journal article
Zhu, Y., Fu, Y., Tu, B., Li, T., Miao, J., Zhao, Q., Wu, S., Xia, J., Zhou, P., Huq, A., Schmidt, W., Ouyang, D., Tang, Z., He, Z., Li, H.-F.. Crystalline and magnetic structures, magnetization, heat capacity, and anisotropic magnetostriction effect in a yttrium-chromium oxide[J]. Physical Review Materials, 2020, 4(9), 094409.
Authors:  Zhu, Y.;  Fu, Y.;  Tu, B.;  Li, T.;  Miao, J.; et al.
Favorite | TC[WOS]:15 TC[Scopus]:16  IF:3.1/3.4 | Submit date:2022/08/11
Erratum: High-temperature magnetism and crystallography of a YCrO3 single crystal Journal article
Zhu, Y., Wu, S., Tu, B., Jin, S., Huq, A., Persson, J., Gao, H., Ouyang, D., He, Z., Yao, D.-X., Tang, Z., Li, H.-F.. Erratum: High-temperature magnetism and crystallography of a YCrO3 single crystal[J]. Physical Review B, 2020, 019901-1-019901-3.
Authors:  Zhu, Y.;  Wu, S.;  Tu, B.;  Jin, S.;  Huq, A.; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2022/08/11
Magnetism  Crystallography  Ycro3  
Super-Necking Crystal Growth and Structural and Magnetic Properties of SrTb$_2$O$_4$ Single Crystals Journal article
Wu, S., Zhu, Y., Gao, H., Xiao, Y., Xia, J., Zhou, P., Ouyang, D., Li, Z., Chen, Z., Tang, Z., Li, H.-F.. Super-Necking Crystal Growth and Structural and Magnetic Properties of SrTb$_2$O$_4$ Single Crystals[J]. ACS Omega, 2020, 16584-16594.
Authors:  Wu, S.;  Zhu, Y.;  Gao, H.;  Xiao, Y.;  Xia, J.; et al.
Favorite | TC[WOS]:12 TC[Scopus]:11  IF:3.7/4.0 | Submit date:2022/08/11
Crystal Growth  Structural And Magnetic Properties  srtb$_2$o$_4$  Single Crystals  
Can machine learning predict drug nanocrystals? Journal article
He, Y., Ye, Z., Liu, X., Wei, Z., Qiu, F., Li, H., Zheng, Y.Y., Ouyang, D.. Can machine learning predict drug nanocrystals?[J]. Journal of Controlled Release, 2020, 322, 274-285.
Authors:  He, Y.;  Ye, Z.;  Liu, X.;  Wei, Z.;  Qiu, F.; et al.
Favorite | TC[WOS]:52 TC[Scopus]:60  IF:10.5/10.6 | Submit date:2022/08/11
Machine Learningnanocrystalsparticle Sizepolydispersity Index (Pdi)Prediction  
High-temperature magnetism and crystallography of a YCrO3 single crystal Journal article
Zhu, Y. H., Wu, S., Tu, B., Jin, S. J., Huq, A., Persson, J., Gao, H. S., Ouyang, D., He, Z. B., Yao, D.-X., Tang, Z., Li, H.-F.. High-temperature magnetism and crystallography of a YCrO3 single crystal[J]. Physical Review B, 2020, 101(1), 014114.
Authors:  Zhu, Y. H.;  Wu, S.;  Tu, B.;  Jin, S. J.;  Huq, A.; et al.
Favorite | TC[WOS]:24 TC[Scopus]:23 | Submit date:2022/08/11
Insight into the Dissolution Molecular Mechanism of Ternary Solid Dispersions by Combined Experiments and Molecular Simulations Journal article
Han, R., Huang, T., Liu, X., Yin, X., Li, H., Lu, J., Ji, Y., Sun, H., Ouyang, D.. Insight into the Dissolution Molecular Mechanism of Ternary Solid Dispersions by Combined Experiments and Molecular Simulations[J]. AAPS PharmSciTech, 2019, 274-274.
Authors:  Han, R.;  Huang, T.;  Liu, X.;  Yin, X.;  Li, H.; et al.
Favorite |   IF:3.4/3.5 | Submit date:2022/08/11
dissolution effect  molecular modeling  solid dispersion  ternary system  
An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction Journal article
Ye Z., Yang Y., Li X., Cao D., Ouyang D.. An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction[J]. Molecular Pharmaceutics, 2019, 16(2), 533-541.
Authors:  Ye Z.;  Yang Y.;  Li X.;  Cao D.;  Ouyang D.
Favorite | TC[WOS]:57 TC[Scopus]:69  IF:4.5/4.6 | Submit date:2019/02/14
Adme  Deep Learning  Multitask Learning  Pharmacokinetic Parameters  Transfer Learning  
Deep learning for in vitro prediction of pharmaceutical formulations Journal article
Yang Y., Ye Z., Su Y., Zhao Q., Li X., Ouyang D.. Deep learning for in vitro prediction of pharmaceutical formulations[J]. Acta Pharmaceutica Sinica B, 2019, 9(1), 177-185.
Authors:  Yang Y.;  Ye Z.;  Su Y.;  Zhao Q.;  Li X.; et al.
Favorite | TC[WOS]:88 TC[Scopus]:112 | Submit date:2019/02/14
Automatic Dataset Selection Algorithm  Deep Learning  Oral Fast Disintegrating Films  Oral Sustained Release Matrix Tablets  Pharmaceutical Formulation  Small Data