×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [9]
Authors
SUN HAIWEI [4]
VONG SEAK WENG [4]
Document Type
Journal article [9]
Date Issued
2022 [1]
2021 [2]
2020 [1]
2019 [2]
2018 [2]
2017 [1]
More...
Language
英語English [9]
Source Publication
Journal of Scien... [2]
APPLIED MATHEMAT... [1]
APPLIED MATHEMAT... [1]
Applied Mathemat... [1]
Applied Numerica... [1]
BIT Numerical Ma... [1]
More...
Indexed By
SCIE [8]
ESCI [1]
Funding Organization
Funding Project
Exponential-like... [1]
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-9 of 9
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Second-order nonuniform time-stepping schemes for time-fractional evolution equations with general elliptic operator
Journal article
Lyu, Pin, Zhou, Linghui, Vong, Seakweng. Second-order nonuniform time-stepping schemes for time-fractional evolution equations with general elliptic operator[J]. Applied Mathematics Letters, 2022, 139, 108541.
Authors:
Lyu, Pin
;
Zhou, Linghui
;
Vong, Seakweng
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
IF:
2.9
/
2.6
|
Submit date:2023/02/28
Fractional Evolution Equation
Mixed Derivatives
Variable Coefficients
Nonuniform Mesh
Second-Order and Nonuniform Time-Stepping Schemes for Time Fractional Evolution Equations with Time–Space Dependent Coefficients
Journal article
Pin Lyu, Seakweng Vong. Second-Order and Nonuniform Time-Stepping Schemes for Time Fractional Evolution Equations with Time–Space Dependent Coefficients[J]. Journal of Scientific Computing, 2021, 89(2), 49.
Authors:
Pin Lyu
;
Seakweng Vong
Favorite
|
TC[WOS]:
8
TC[Scopus]:
8
IF:
2.8
/
2.7
|
Submit date:2021/12/08
Nonuniform Mesh
Time Fractional Evolution Equations
Variable Coefficients
Weak Singularity
An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients: An efficient multigrid solver for two-dimensional SFDEs
Journal article
Pan,Kejia, Sun,Hai Wei, Xu,Yuan, Xu,Yufeng. An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients: An efficient multigrid solver for two-dimensional SFDEs[J]. APPLIED MATHEMATICS AND COMPUTATION, 2021, 402, 126091.
Authors:
Pan,Kejia
;
Sun,Hai Wei
;
Xu,Yuan
;
Xu,Yufeng
Favorite
|
TC[WOS]:
16
TC[Scopus]:
17
IF:
3.5
/
3.1
|
Submit date:2021/03/09
Biconjugate Gradient Stabilized Method
Cascadic Multigrid Method
Fractional Diffusion Equations
Richardson Extrapolation
Variable Coefficients
An Efficient Second‑Order Convergent Scheme for One‑Side Space Fractional Diffusion Equations with Variable Coefficients
Journal article
Lin Xuelei, Lyu Pin, Michael K. Ng, Sun HW(孫海衛), Seak Weng Vong. An Efficient Second‑Order Convergent Scheme for One‑Side Space Fractional Diffusion Equations with Variable Coefficients[J]. Communications on Applied Mathematics and Computation, 2020, 2(2), 215--239.
Authors:
Lin Xuelei
;
Lyu Pin
;
Michael K. Ng
;
Sun HW(孫海衛)
;
Seak Weng Vong
Adobe PDF
|
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
1.4
/
0
|
Submit date:2022/07/28
One-side Space Fractional Diffusion Equation
Variable Diffusion Coefficients
Stability And Convergence
High-order Finite-difference Scheme
Preconditioner
CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS
Journal article
XUE-LEI LIN, MICHAEL K. NG, HAI-WEI SUN. CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS[J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57(3), 997-1019.
Authors:
XUE-LEI LIN
;
MICHAEL K. NG
;
HAI-WEI SUN
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
IF:
2.8
/
3.5
|
Submit date:2019/06/10
Nonseparable Variable Coefficients
Crank–nicolson Adi Methods
Space-fractional Diffusion Equations
Unconditional Stability Analysis
On a second order scheme for space fractional diffusion equations with variable coefficients
Journal article
Vong,Seakweng, Lyu,Pin. On a second order scheme for space fractional diffusion equations with variable coefficients[J]. Applied Numerical Mathematics, 2019, 137, 34-48.
Authors:
Vong,Seakweng
;
Lyu,Pin
Favorite
|
TC[WOS]:
13
TC[Scopus]:
13
IF:
2.2
/
2.3
|
Submit date:2021/03/09
Fractional Diffusion Equation
Stability And Convergence Of Numerical Methods
Variable Coefficients
Weighted And Shifted Grünwald–letnikov Formulas
Efficient preconditioner of one-sided space fractional diffusion equation
Journal article
Lin,Xue Lei, Ng,Michael K., Sun,Hai Wei. Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numerical Mathematics, 2018, 58(3), 729-748.
Authors:
Lin,Xue Lei
;
Ng,Michael K.
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
22
TC[Scopus]:
23
IF:
1.6
/
1.8
|
Submit date:2019/05/27
One-sided Space-fractional Derivative
Preconditioning
Toeplitz-like Matrix
Variable Diffusion Coefficients
Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients
Journal article
Lin,Xue lei, Ng,Michael K., Sun,Hai Wei. Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients[J]. Journal of Scientific Computing, 2018, 75(2), 1102-1127.
Authors:
Lin,Xue lei
;
Ng,Michael K.
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
24
TC[Scopus]:
24
IF:
2.8
/
2.7
|
Submit date:2019/05/27
Convergence
High-order Finite Difference Schemes
Stability
Time-dependent Space-fractional Diffusion Equation
Variable Diffusion Coefficients
On numerical contour integral method for fractional diffusion equations with variable coefficients
Journal article
Vong, Seakweng, Lyu, Pin. On numerical contour integral method for fractional diffusion equations with variable coefficients[J]. APPLIED MATHEMATICS LETTERS, 2017, 64, 137-142.
Authors:
Vong, Seakweng
;
Lyu, Pin
Favorite
|
TC[WOS]:
4
TC[Scopus]:
7
IF:
2.9
/
2.6
|
Submit date:2018/10/30
Fractional Diffusion Equations
Variable Coefficients
Numerical Contour Integral