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Abstract
In this paper, a second-order finite-difference scheme is investigated for time-dependent 
space fractional diffusion equations with variable coefficients. In the presented scheme, 
the Crank–Nicolson temporal discretization and a second-order weighted-and-shifted 
Grünwald–Letnikov spatial discretization are employed. Theoretically, the unconditional 
stability and the second-order convergence in time and space of the proposed scheme are 
established under some conditions on the variable coefficients. Moreover, a Toeplitz pre-
conditioner is proposed for linear systems arising from the proposed scheme. The condition 
number of the preconditioned matrix is proven to be bounded by a constant independent of 
the discretization step-sizes, so that the Krylov subspace solver for the preconditioned lin-
ear systems converges linearly. Numerical results are reported to show the convergence rate 
and the efficiency of the proposed scheme.

Keywords One-side space fractional diffusion equation · Variable diffusion coefficients · 
Stability and convergence · High-order finite-difference scheme · Preconditioner
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1 Introduction

In the paper, we study an efficient numerical method for solving the one-side space frac-
tional diffusion equation (OSFDE) with variable coefficients. To begin with, we first pre-
sent the one-spatial-dimensional (1-D) OSFDE (the two-dimensional case will be dis-
cussed in Sect. 3) [20, 37, 38, 40]:
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where d(x), which satisfies 0 < d− ≤ d(x) ≤ d+ < ∞ , is a strictly positive known function, 
� , � , and f are all known functions, u is unknown to be solved, and xLD

�

x
u(x, t) is the Rie-

mann–Liouville (RL) fractional derivative of order � ∈ (1, 2) defined as [29, 36]

with Γ(⋅) denoting the gamma function.
Due to the nonlocal dependence, fractional derivatives model many challenging phe-

nomena more accurately than integer-order derivatives do, which has, therefore, attracted 
lots of interests in recent years. For example, in [1], a two-dimensional version of the 
OSFDE is applied to image denoising, where the noisy image is the initial value and the 
solution of the diffusion equation at final time is the denoised image. Due to the nonlocal 
property of the fractional derivative, the fractional diffusion-based image denoising model 
[1] has a good capability of texture preserving. For more applications of the fractional dif-
fusion equation, one may refer to viscoelasticity [12], fractal dynamics [34], signal pro-
cessing [3, 35, 42], image processing [30–32], and the references therein.

Nevertheless, it is well known that closed-form analytic solutions of fractional diffu-
sion equations are usually not available, especially in the existence of variable coefficients. 
Because of this, many numerical discretization schemes have been developed for fractional 
diffusion equations; see, e.g., [5, 10, 17–19, 22, 25, 28, 45–47].

For those schemes applicable to or solely developed for OSFDEs, one may refer to [2, 
6, 9, 15, 24, 26, 33, 37–41, 44]. In [9, 15, 44], numerical schemes with spatial fourth-order 
convergence for a space fractional diffusion equation are developed by applying the tech-
nique of compact operators, which is, however, only available for the constant-coefficient 
case. Another spatially fourth-order accurate scheme is studied in [2] by implementing 
weighted-and-shifted Lubich difference operators whose convergent property is established 
only for constant diffusion coefficients. Some second-order numerical schemes are proposed 
in [37–40] for solving OSFDEs with variable coefficients, which, however, does not provide 
convergence proof. In [33], the stability and convergence of the second-order numerical 
scheme for variable coefficient equations are established for the 1-D OSFDE, which cannot 
be extended to the case of higher spatial dimension. In [21], a series of numerical schemes 
for the Riesz space fractional diffusion equation have been proven to be convergent and sta-
ble. Nevertheless, the proof technique used in [21] heavily depends on the symmetry of dis-
cretization matrix of the Riesz fractional derivative, which is not applicable to the OSFDE 
that involves the non-symmetric one-sided fractional derivatives weighted by variable coef-
ficients. The shift-Grünwald spatial scheme together with the backward difference temporal 
scheme proposed in [23] is applicable to the OSFDE with variable coefficients, whose sta-
bility and convergence can be established under infinity norm. Nevertheless, its convergence 
rate is only of first order in time and space. Hence, there is no second-order scheme for the 
two-spatial-dimension (2-D) OSFDE with variable coefficients.

In this paper, we propose a second-order scheme for 1-D and 2-D OSFDEs with vari-
able coefficients. The Crank–Nicolson method and a second-order weighted-and-shifted 

(1)

⎧
⎪⎨⎪⎩

�u(x, t)

�t
= d(x) xLD

�

x
u(x, t) + f (x, t), x ∈ (xL, xR), t ∈ (0, T],

u(xL, t) = 0, u(xR, t) = �(t), t ∈ [0, T],

u(x, 0) = �(x), x ∈ [xL, xR],

(2)xL
D�

x
u(x, t) =

1

Γ(2 − �)

�2

�x2 ∫
x

xL

u(�, t)

(x − �)�−1
d�
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Grünwald–Letnikov difference (WSGD, see [41]) operator are employed to discretize tempo-
ral and spatial derivatives, respectively. The key point of stability and convergence proof is to 
find an inner product under which the spatial discretization matrix is negative semi-definite. 
For the 1-D case, we choose the inner product associated with the diagonal matrix arising 
from discretization of d−1. As a result, the unconditional stability and convergence of the pro-
posed scheme are established without additional assumption on d(x) for the 1-D case. For the 
2-D case, to construct a desired inner product, some assumptions are made on the variable 
coefficients (see the assumptions in Corollaries 3.1–3.2), with which the unconditional stabil-
ity and convergence of the proposed scheme are established.

Moreover, because of the nonlocality of the fractional derivative and the existence of the 
variable coefficients, the discretization of the OSFDE tends to generate dense matrix with high 
displacement rank [27], for which the discrete linear systems related to the variable coeffi-
cients OSFDE are time-consuming to directly solve. Fortunately, the discretization matrix has 
Toeplitz-like structure due to which its matrix–vector multiplication can be fast computed via 
fast Fourier transforms (FFTs). Because of the fast matrix–vector multiplication, fast iterative 
solvers for the linear systems can be possibly developed. However, the discretization matrix 
of the OSFDE is ill-conditioned when �∕h� is large, where � and h represent the temporal and 
spatial step-sizes, respectively. Thus, a Toeplitz preconditioner is proposed to reduce the con-
dition number of 1-D and 2-D discretization matrices. Theoretically, we show that the condi-
tion number of the preconditioned matrix is uniformly bounded by a constant independent of � 
and h under certain conditions on the diffusion coefficients (see the assumptions in Theorems 
2.4, 3.3), so that the Krylov subspace method for the preconditioned linear systems converges 
linearly no matter the unpreconditioned matrix is ill-conditioned or not.

To summarize, the contribution of this paper is of twofold: (i) the proposed scheme is the 
first scheme of second-order accuracy for the 2-D OSFDE with variable coefficients; (ii) the 
proposed preconditioning technique is the first fast solver with the convergence rate independ-
ent of discretization step-sizes for linear systems from second-order discretization of the 2-D 
OSFDE with variable coefficients.

This paper is organized as follows. In Sect. 2, we propose a second-order scheme and its 
corresponding Toeplitz preconditioner for the one-dimensional OSFDE, analyze the uncon-
ditional stability and convergence of the proposed scheme, and estimate the condition number 
of the preconditioned matrix. In Sect. 3, we extend the scheme and the preconditioner to the 
two-dimensional case. In Sect. 4, numerical results are reported to show the efficiency and 
accuracy of the proposed scheme.

2  Stability and Convergence of Discrete One‑Dimensional OSFDE 
and Its Preconditioning

We need some notations to describe the discretization for (1). Let h = (xR − xL)∕(M + 1) and 
� = T∕N be the space and time step-sizes, respectively, where M and N are given positive inte-
gers. And denote xi = xL + ih for i = 0, 1,⋯ ,M + 1 , tn = n� for n = 0, 1,⋯ ,N . Throughout 
this paper, the discretization on the RL fractional derivative is based on the following second-
order WSGD formula [41]:

(3)xL
D�

x
u(xi) =

1

h�

i∑
k=0

w
(�)

k
u(xi−k+1) +O(h2),
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which is under the smooth assumptions u, −∞D
�+2
x

u and Fourier transform of −∞D
�+2
x

u 
belong to L1(ℝ) (see, e.g., [4]). The coefficients w(�)

k
 were defined by [41]

where g(�)
k

 are the coefficients of the power series of (1 − z)� , and they can be obtained 
recursively as

Next, we introduce the finite-difference scheme for solving (1). Let un
i
 be the numerical 

approximation of u(xi, tn) . Denote di = d(xi) , �i = �(xi) , f
n−

1

2

i
= f (xi, tn− 1

2

) for 1 ≤ i < M 

and f
n−

1

2

M
= f (xM , tn− 1

2

) + w
(�)

0
�(t

n−
1

2

)∕h� , where t
n−

1

2

= (tn−1 + tn)∕2 , n = 1, 2,⋯ ,N . 
Then, applying the Crank–Nicolson technique and approximation (3) to the time derivative 
and the space fractional derivatives of (1), respectively, we get

where |Rn−
1

2

i
| ≤ c1(�

2 + h2) for a positive constant c1 ; see, e.g., [41].

Denote un = [un
1
, un

2
,⋯ , un

M
]T , f n−

1

2 = [f
n−

1

2

1
, f

n−
1

2

2
,⋯ , f

n−
1

2

M
]T , and

where {w(�)

k
}M
k=0

 are the coefficients given in (4).
Omitting the small term R

n+
1

2

i
 in (5), Eq. (1) can be solved numerically by the following 

finite-difference scheme in the matrix form:

2.1  Stability and Convergence

Some general notations:

• ℂ
m×n ( ℝm×n , respectively) denotes the set of all m × n complex (real, respectively) 

matrices;
• H(X) denotes the symmetric part of a square matrix X.

Lemma 2.1 [41] The matrix G� + GT
�
 is negative definite.

(4)w
(�)

0
=

�

2
g
(�)

0
, w

(�)

k
=

�

2
g
(�)

k
+

2 − �

2
g
(�)

k−1
for k ≥ 1,

g
(�)

0
= 1, g

(�)

k
=

(
1 −

� + 1

k

)
g
(�)

k−1
for k = 1, 2,⋯ .

(5)
un
i
− un−1

i

�
=

1

2h�
di

i∑
k=0

w
(�)

k

(
un−1
i−k+1

+ un
i−k+1

)
+ f

n−
1

2

i
+ R

n−
1

2

i
, 1 ≤ i ≤ M,

(6)D = diag(d1, d2,⋯ , d
M
), G� =

⎡⎢⎢⎢⎢⎢⎣

w
(�)

1
w
(�)

0
0 ⋯ 0

w
(�)

2
w
(�)

1
w
(�)

0
⋱ ⋮

⋮ w
(�)

2
w
(�)

1
⋱ 0

⋮ ⋱ ⋱ w
(�)

0

w
(�)

M
⋯ ⋯ w

(�)

2
w
(�)

1

⎤⎥⎥⎥⎥⎥⎦

,

(7)
1

�

(
un − un−1

)
=

1

2h�
DG�

(
un−1 + un

)
+ f

n−
1

2 , n = 1, 2,⋯ ,N.
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Lemma 2.2 [11, 13] Let the symmetric matrix H ∈ ℝ
n×n with eigenvalues �1 ≥ �2 ≥ ⋯ ≥ �n . 

Then, for all w ∈ ℝ
n×1,

Now, we show the stability and convergence of the scheme (7) by the energy method.

Theorem 2.1 The finite-difference scheme (7) is unconditionally stable and its solution sat-
isfies the following estimate:

where ‖ ⋅ ‖D−1 is the norm induced by the inner product ⟨v1, v2⟩D−1 ∶= hvT
1
D−1v2.

Proof Some steps of this proof are similar to those of Theorem 3.8 in [43]. Multiplying 
h
(
un−1 + un

)T
D−1 on the both sides of (7), we get

Notice that wTG�w = wTH(G�)w for any real vector w. Therefore, by Lemma 2.1, the first 
term on the right-hand side of (8) can be estimated as

As a result

Applying the Cauchy–Schwarz inequality on the right-hand side of (9), we get

which is equivalent to

Iterating (10) for n times, we obtain

�nw
Tw ≤ wTHw ≤ �1w

Tw.

‖un‖2
D−1 ≤ exp(2T)‖�‖2

D−1 + [exp(2T) − 1] max
1≤k≤n

���f
k−

1

2
���
2

D−1
, n = 1, 2,⋯ ,N,

(8)
1

�
h
(
un−1 + un

)T
D−1

(
un − un−1

)
=

1

2h�
h
(
un−1 + un

)T
G�

(
un−1 + un

)

+ h
(
un−1 + un

)T
D−1f

n−
1

2 .

1

2h�
h
(
un−1 + un

)T
G�

(
un−1 + un

)

=
1

2h�
h
(
un−1 + un

)T
H(G�)

(
un−1 + un

) ≤ 0.

(9)
h(un)TD−1un − h(un−1)TD−1un−1

≤ �h(un)TD−1f
n−

1

2 + �h(un−1)TD−1f
n−

1

2 .

‖un‖2
D−1 ≤ ���u

n−1���
2

D−1
+

�

2
‖un‖2

D−1 +
�

2

���u
n−1���

2

D−1
+ �

���f
n−

1

2
���
2

D−1
,

(10)‖un‖2
D−1 ≤ 2 + �

2 − �

���u
n−1���

2

D−1
+

2�

2 − �

��� f
n−

1

2
���
2

D−1
.

(11)

‖un‖2
D−1 ≤

�
2 + �

2 − �

�n���u
0���

2

D−1

+
2�

2 − �

�
1 +

2 + �

2 − �
+

�
2 + �

2 − �

�2

+⋯ +

�
2 + �

2 − �

�n−1�
max
1≤k≤n

��� f
k−

1

2
���
2

D−1
.



220 Communications on Applied Mathematics and Computation (2020) 2:215–239

1 3

For the small � (� ≤ 1) , we have

and

The result follows from (11)–(13).

Theorem 2.2 Let u(xi, tn) be the exact solution of (1) and un
i
 be the solution of the finite-dif-

ference scheme (7). Denote en
i
= u(xi, tn) − un

i
 , 0 ≤ i ≤ M + 1 , 0 ≤ n ≤ N . Then, there exists 

a positive constant c2 such that

where en = [en
1
, en

2
,⋯ , en

M
]T and ‖ ⋅ ‖ denotes the discrete L2 norm, i.e., ‖v‖ =

√
hvTv.

Proof Denote Rn−
1

2 = [R
n−

1

2

1
,R

n−
1

2

2
,⋯ ,R

n−
1

2

M
]T . We can easily show that en and en

i
 satisfy 

the following error equations:

By Theorem 2.1, we have

As D−1 is a positive diagonal matrix, utilizing Lemma 2.2, we get

2.2  An Estimate on the Field of Values of DG
˛
+ G

T

˛
D

In this subsection, we focus on estimating the field of values of DG� + GT
�
D , the results 

of which will be further applied to the analysis of one-dimensional preconditioning and 
the extension to the two-dimensional OSFDE. First, we denote g(�, x) as the generating 
function [27] of the Toeplitz matrix G� . The next two lemmas describe some properties 
concerning g(�, x) , which will be useful in obtaining the desired estimation.

Lemma 2.3 [27] Let � = [u1, u2,⋯ , uM]
T, � = [v1, v2,⋯ , vM]

T ∈ ℝ
M×1 . Then, we have

(12)
(
2 + �

2 − �

)n

=

(
1 +

2�

2 − �

)n

≤ (1 + 2�)n ≤ lim
N→+∞

(
1 +

2T

N

)N

= exp(2T),

(13)2�

2 − �

n∑
k=1

(
2 + �

2 − �

)k−1

=
(
2 + �

2 − �

)n

− 1 ≤ exp(2T) − 1.

‖en‖ ≤ c2(�
2 + h2),

1

�

(
en − en−1

)
=

1

2h�
DG�

(
en−1 + en

)
+ R

n−
1

2 , 1 ≤ n ≤ N,

en
0
= en

M+1
= 0, 1 ≤ n ≤ N, e0

i
= 0, 0 ≤ i ≤ M + 1.

‖en‖2
D−1 ≤ [exp(2T) − 1] max

1≤k≤n
���R

k−
1

2
���
2

D−1
, n = 1, 2,⋯ ,N.

‖en‖2 ≤ [c2(�
2 + h2)]2, n = 1, 2,⋯ ,N.

�TG�� =
1

2� ∫
�

−�

M∑
k=1

uke
−�kx

M∑
k=1

vke
�kxg(�, x)dx.
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Lemma 2.4 [43] It holds that

where ℜ[g(�, x)] denotes the real part of g(�, x).

The following lemma provides a novel bound to the field of values of D̃GD̃ , where 
G = −G� − GT

�
 and D̃ is a diagonal matrix satisfying some properties.

Lemma 2.5 [43] Denote G = −G� − GT
�
 . Suppose that D̃ = diag(d̃(x1), d̃(x2),⋯ , d̃(xM)) for 

some function d̃(x) defined on (xL, xR) . For any real vector � = [u1, u2,⋯ , uM]
T , we have

if d̃(x) is convex and d̃(x) ≥ 0 , or d̃(x) is concave and d̃(x) ≤ 0.

Assuming that 0 ≤ 𝜅min ≤ d(x) ≤ 𝜅max < ∞ . The following theorem reveals some inclu-
sion relations between numerical ranges of G and −DG� − GT

�
D , which acts an important 

role in the analysis of the proposed preconditioner.

Theorem 2.3 For any � = [u1, u2,⋯ , uM]
T , we have

where � = �max when d(x) is concave, and � = �min when d(x) is convex.

Proof Denote D̃ = D − 𝜅I , then DG𝛼 + GT
𝛼
D = 𝜅(G𝛼 + GT

𝛼
) + D̃G𝛼 + GT

𝛼
D̃ . And, for any 

� = [u1, u2,⋯ , uM]
T , we have

Denote u(x) =
M∑
k=1

uke
�kx and v(x) =

M∑
k=1

(D̃u)ke
�kx , it follows by Lemmas 2.3 and 2.5 that

Using Lemma 2.3 again and applying the Cauchy–Schwarz inequality, Lemma 2.4, (16) 
and (17), we get

�� ≜ min
x

ℜ[−g(�, x)]

|g(�, x)| =
|||||
cos

(
�

2
�

)|||||
,

(14)�TD̃GD̃� ≤ 2max
i
{|d̃i|2}�TG�,

(15)

�
� −

√
2(�max − �min)

��

�
�TG�

≤ �T(−DG� − GT
�
D)� ≤

�
� +

√
2(�max − �min)

��

�
�TG�,

�T(−DG𝛼 − GT
𝛼
D)� = 𝜅�TG� + �T

(
−D̃G𝛼 − GT

𝛼
D̃
)
�.

(16)�TG� = �T
(
−G� − GT

�

)
� =

1

� ∫
�

−�

ℜ[−g(�, x)]|u(x)|2dx,

(17)
�TD̃WD̃� =

1

𝜋 �
𝜋

−𝜋

ℜ[−g(𝛼, x)]|v(x)|2dx

≤ 2(𝜅max − 𝜅min)
2

𝜋 �
𝜋

−𝜋

ℜ[−g(𝛼, x)]|u(x)|2dx.
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Thus, the desired result can be obtained just by utilizing the following inequality:

2.3  Toeplitz Preconditioner for the Discrete One‑Dimensional Fractional Diffusion 
Equation

To solve (7) is equivalent to recursively solve the following linear systems:

where � = IM − �DG� , � = �∕(2h�) , Ik denotes the k × k identity matrix, 
bn = (IM + �DG�) ⋅ u

n−1 + ��
n−

1

2 . As explained in the introduction section, a good precon-
ditioner is required for the linear systems in (18).

For any m × m diagonal matrix, � = diag(c1, c2,⋯ , cm) , denote ����(�) = 1

m

m∑
i=1

ci . In 

this subsection, we propose a Toeplitz preconditioner for the linear systems in (18), 
such that

where d̄ = ����(D) . In the following, we discuss a computationally effective representa-
tion of �−1 , which allows fast matrix–vector multiplication of �−1.

Let � = (v1, v2,⋯ , vM)
T and �̃ = (ṽ1, ṽ2,⋯ , ṽM)

T be solutions of following linear 
systems:

����
T
�
−D̃G𝛼 − G

T

𝛼
D̃
�
�
���

=
1

2𝜋

������
𝜋

−𝜋

(−v∗gu − u
∗
g
∗
v)dx

�����
≤ 1

𝜋 �
𝜋

−𝜋

�g(𝛼, x)��v(x)��u(x)�dx

≤ 1

𝜋𝜍𝛼 �
𝜋

−𝜋

ℜ[−g(𝛼, x)]�v(x)��u(x)�dx

≤ 1

𝜋𝜍𝛼

�

�
𝜋

−𝜋

ℜ[−g(𝛼, x)]�v(x)�2dx
�

�
𝜋

−𝜋

ℜ[−g(𝛼, x)]�u(x)�2dx

≤
√
2(𝜅max − 𝜅min)

𝜋𝜍𝛼 �
𝜋

−𝜋

ℜ[−g(𝛼, x)]�u(x)�2dx

=

√
2(𝜅max − 𝜅min)

𝜍𝛼
�TG�.

𝜅�TG� −
|||�

T
(
−D̃G𝛼 − GT

𝛼
D̃
)
�
||| ≤ �T(−DG𝛼 − GT

𝛼
D)�

≤ 𝜅�TG� +
|||�

T
(
−D̃G𝛼 − GT

𝛼
D̃
)
�
|||.

(18)��n = bn, n = 1, 2⋯ ,N,

(19)� = IM − 𝜂d̄G𝛼 ,

(20)�� = �1 ≡ (1, 0, 0,⋯ , 0)T, ��̃ = �M ≡ (0, 0,⋯ , 0, 1)T.
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According to the Gohberg–Semencul-type formula [8], �−1 can be expressed as follows:

where �1 , �2 are skew-circulant matrices with � , �̄ = (−ṽM , ṽ1,⋯ , ṽM−1)
T as their first col-

umns, respectively; �1 , �2 are circulant matrices with �̂ = (ṽM , ṽ1,⋯ , ṽM−1)
T , � as their 

first columns, respectively. From (20), we see that v1 is the first diagonal entry of �−1 . From 
Lemma 2.1, we see that � + �T is positive definite. Thus,

which means that (21) is applicable. Moreover, the Toeplitz linear systems in (20) can be 
efficiently solved by the super fast direct solver proposed in [7].

For � ∈ ℂ
m×n , denote by �(�) , the set of singular values of � . Also denote 

�2(�) = {x2|x ∈ �(�)} . For any matrix � ∈ ℂ
m×m , denote by �(�) , the spectrum of � . 

For a number � , denote by ℜ(�) , the real part of �.
For any invertible matrix � ∈ ℂ

m×m , define its condition number as

Lemma 2.6 (see [41, Lemma 2.7]) For any � ∈ ℂ
m×m , it holds

As a preconditioner, the invertibility is essential.

Proposition 2.1 � is invertible for any � ∈ (1, 2).

Proof By Lemma 2.1, it is easy to see that � + �T is positive definite and thus has positive 
eigenvalues. From Lemma 2.6, we see that {ℜ(𝜆)|𝜆 ∈ 𝜎(�)} ⊂ (0,+∞) . Therefore, � is 
invertible.

For any Hermitian matrices �1,�2 ∈ ℂ
m×m , denote �1 ≺ �2 or �2 ≻ �1 if �2 −�1 

is Hermitian positive definite. Especially, we denote � ≺ �1 or �1 ≻ � , when �1 itself 
is Hermitian positive definite. Also, we use �1 ⪯ �2 or �2 ⪰ �1 to denote a Hermitian 
positive semi-definite �2 −�1 and use � ⪯ �1 or �1 ⪰ � to denote a Hermitian positive 
semi-definite �1.

Next, we are to estimate the condition number of the preconditioned matrix ��−1.

Proposition 2.2 For positive numbers �i , �i ( 1 ≤ i ≤ m ), it obviously holds that

(21)�−1 =
1

2v1
(�1�1 − �2�2),

v1 = �T
1
�−1�1 =

1

2
�T
1
(�−1 + �−T)�1 =

1

2
�T
1
�−1(� + �T)�−T�1 > 0,

cond(�) ≜ ||�||2||�−1||2.

{ℜ(𝜆)|𝜆 ∈ 𝜎(�)} ⊂

[
min

z∈𝜎((�+�∗)∕2)
z, max

z∈𝜎((�+�∗)∕2)
z

]
.

min
1≤i≤m

�i

�i
≤
( m∑

i=1

�i

)−1( m∑
i=1

�i

)
≤ max

1≤i≤m
�i

�i
.
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Theorem 2.4 Assume

 (i) for any x ∈ (xL, xR) , d(x) ∈ [�min, �max] for positive constants �min and �max,
 (ii) 𝜅max − 𝜈𝛼 > 0 , with �� =

√
2(�max − �min)∕��,

 (iii) d(x) is concave.

Then, for any N ≥ 1 , any M ≥ 1 , 𝛴2(��−1) ⊂ [š, ŝ] and thus

where š and ŝ are positive constants independent of � , h, and given by

Proof By straightforward calculation:

By Theorem 2.3, we see that

For any non-zero vector � ∈ ℝ
M×1 , denote � = �−1� . Then, it holds

By (22),

By Proposition 2.2 and (23),

During the proof above, there is no constraint on M and N. Thus, for any N ≥ 1 , any M ≥ 1 , 
𝛴2(��−1) ⊂ [š, ŝ] and sup

N,M≥1
cond(��−1) ≤ √

ŝ∕š . 

Similar to proof of Theorem 2.4, one can prove the following theorem.

sup
N,M≥1

cond(��−1) ≤ √
ŝ∕š,

š = min

{
𝜅max − 𝜈𝛼

𝜅max

,
𝜅2
min

𝜅2
max

}
, ŝ = max

{
𝜅 + 𝜈𝛼

𝜅min

,
𝜅2
max

𝜅2
min

}
.

�T� = IM − 𝜂(GT
𝛼
D + DG𝛼) + 𝜂2GT

𝛼
D2G𝛼 ,

�T� = IM + 𝜂d̄G + 𝜂2d̄2GT
𝛼
G𝛼 .

(22)
� ≺ IM + (𝜅max − 𝜈𝛼)𝜂G + 𝜅2

min
𝜂2GT

𝛼
G𝛼

⪯ �T� ⪯ IM + (𝜅max + 𝜈𝛼)𝜂G + 𝜅2
max

𝜂2GT
𝛼
G𝛼 .

�T(��−1)T(��−1)�

�T�
=

�T�T��

�T�T��
.

(23)

�T[IM + (𝜅max − 𝜈𝛼)𝜂G + 𝜅2
min

𝜂2GT
𝛼
G𝛼]�

�T(IM + 𝜂d̄G + 𝜂2d̄2GT
𝛼
G𝛼)�

≤ �T�T��

�T�T��
≤ �T[IM + (𝜅max + 𝜈𝛼)𝜂G + 𝜅2

max
𝜂2GT

𝛼
G𝛼]�

�T(IM + 𝜂d̄G + 𝜂2d̄2GT
𝛼
G𝛼)�

.

š = min

{
1,

𝜅max − 𝜈𝛼

𝜅max

,
𝜅2
min

𝜅2
max

}
≤ �T�T��

�T�T��
≤ max

{
1,

𝜅 + 𝜈𝛼

𝜅min

,
𝜅2
max

𝜅2
min

}
= ŝ.
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Theorem 2.5 Assume

 (i) for any x ∈ (xL, xR) , d(x) ∈ [�min, �max] for positive constants �min and �max,
 (ii) 𝜅min − 𝜈𝛼 > 0 , with �� =

√
2(�max − �min)∕��,

 (iii) d(x) is convex.

Then, for any N ≥ 1 , any M ≥ 1 , 𝛴2(��−1) ⊂ [š, ŝ] and thus

where š and ŝ are positive constants independent of � , h and given by

Remark 2.1 Theorems 2.4–2.5 show that cond(��−1) has an upper bound independent of 
� and h under certain assumptions on the coefficient function d. Thus, the Krylov subspace 
method for such preconditioned linear systems converges linearly and independently on the 
discretization step-sizes.

3  Extension to 2‑D OSFDE

In this section, we study the following 2-D OSFDE [39]. For ease of statement, 
we set u|�� ≡ 0 in (24), although u(x,  y,  t) could be non-zero for t ∈ (0, T] and 
(x, y) ∈ ({xR} × (yL, yR)) ∪ ((xL, xR) × {yR}),

where �, � ∈ (1, 2) , � = (xL, xR) × (yL, yR) , �� denotes the boundary of � and d(x,  y), 
e(x, y) are nonnegative functions, and xLD

�

x
u(x, y, t) denotes the �-order RL derivative with 

respect to the x direction defined as

yL
D�

y
u(x, y, t) can be defined in a similar way.

To state a finite-difference scheme for (24), we need more notations. Let � = T∕N , 
h1 =

xR−xL

M1+1
 , h2 =

yR−yL

M2+1
 , where M1 , M2 , and N are some positive integers. For 

i = 0, 1,⋯ ,M1 + 1 , j = 0, 1,⋯ ,M2 + 1 and n = 0, 1,⋯ ,N , denote xi = ih1 , yj = jh2 , and 
tn = n� . Denote t

n−
1

2

=
tn+tn−1

2
 for n = 1, 2,⋯ ,N . Let �̄�h = {(xi, yj)|0 ≤ i ≤ M1 + 1,

0 ≤ j ≤ M2 + 1} , 𝛺h = �̄�h ∩𝛺 , 𝜕𝛺h = �̄�h ∩ 𝜕𝛺 . Furthermore, denote di,j = d(xi, yj) , 

ei,j = e(xi, yj) , f
n−

1

2

i,j
= f (xi, yj, tn− 1

2

) , and �i,j = �(xi, yj) , and let un
i,j

 be the numerical approxi-

sup
N,M≥1

cond(��−1) ≤ √
ŝ∕š,

š = min

{
𝜅min − 𝜈𝛼

𝜅max

,
𝜅2
min

𝜅2
max

}
, ŝ = max

{
𝜅min + 𝜈𝛼

𝜅min

,
𝜅2
max

𝜅2
min

}
.

(24)

⎧⎪⎪⎨⎪⎪⎩

𝜕u(x, y, t)

𝜕t
= d(x, y) xLD

𝛼

x
u(x, y, t) + e(x, y)yLD

𝛽

y
u(x, y, t) + f (x, y, t),

(x, y) ∈ 𝛺, t ∈ (0,T],

u(x, y, t) = 0, (x, y) ∈ 𝜕𝛺

u(x, y, 0) = 𝜑(x, y), (x, y) ∈ �̄�,

xL
D�

x
u(x, y, t) =

1

Γ(2 − �)

�2

�x2 ∫
x

xL

u(�, y, t)

(x − �)�−1
d�,
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mation of u(xi, yj, tn) . Then, in a similar way with the one-dimensional case, we can derive the 
Crank–Nicolson scheme for the 2-D problem (24) as follows:

where R̂
n−

1

2

i,j
≤ c3(𝜏

2 + h2
1
+ h2

2
) for a positive constant c3.

Take

Omitting the small term R̂
n−

1

2

i,j
 in (25), the finite-difference scheme in the matrix form for 

(24) can be given as

where I is the identity matrix, the symbol “ ⊗ ” denotes the Kronecker product, and G� has 
the similar definition to G�.

3.1  Stability and Convergence of the 2‑D Problem

To discuss the stability and convergence of the scheme (26), we denote

and introduce a set

Now, we present the stability of the scheme (26).

Theorem  3.1 For any Q ∈ � , the finite-difference scheme (26) is unconditionally stable 
and its solution satisfies the following estimate:

(25)

un
i,j
− un−1

i,j

𝜏
=

1

2h𝛼
di,j

i∑
k=0

w
(𝛼)

k

(
un−1
i−k+1,j

+ un
i−k+1,j

)

+
1

2h𝛽
ei,j

j∑
k=0

w
(𝛽)

k

(
un−1
i,j−k+1

+ un
i,j−k+1

)
+ f

n−
1

2

i,j
+ R̂

n−
1

2

i,j
,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 1 ≤ n ≤ N,

un = [un
1,1
, un

2,1
,⋯ , un

M1,1
, un

1,2
,⋯ , un

M1,2
,⋯ , un

1,M2
,⋯ , un

M1,M2
]T,

f
n−

1

2 = [f
n−

1

2

1,1
, f

n−
1

2

2,1
,⋯ , f

n−
1

2

M1,1
, f

n−
1

2

1,2
,⋯ , f

n−
1

2

M1,2
,⋯ , f

n−
1

2

1,M2
,⋯ , f

n−
1

2

M1,M2
]T,

D = diag(d1,1, d2,1,⋯ , dM1,1
, d1,2,⋯ , dM1,2

,⋯ , dM1,M2
),

E = diag(e1,1, e2,1,⋯ , eM1,1
, e1,2,⋯ , eM1,2

,⋯ , eM1,M2
).

(26)
1

𝜏

(
un − un−1

)
=

(
1

2h𝛼
1

D(I ⊗ G𝛼) +
1

2h
𝛽

2

E(G𝛽 ⊗ I)

)(
un−1 + un

)
+ f

n−
1

2 ,

1 ≤ n ≤ N,

A =
1

2h𝛼
1

D(I ⊗ G𝛼) +
1

2h
𝛽

2

E(G𝛽 ⊗ I),

� = {X|X ≻ �, −H(XA) ⪰ �, cond(X) ≤ c for c independent of 𝜏, h1 and h2}.

‖un‖2
Q
≤ exp(2T)‖�‖2

Q
+ [exp(2T) − 1] max

1≤k≤n ‖f
k−

1

2 ‖2
Q
, n = 1, 2,⋯ ,N,
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where ‖ ⋅ ‖Q is defined as ‖v‖2
Q
∶= hvTQv.

Proof Multiplying h
(
un−1 + un

)T
Q on the both sides of (26), we get

Since H(QA) is negative semi-definite, we have

Then, it follows

The rest of the proof is similar to that in Theorem 2.1. 

With Theorem 3.1, the convergence of the scheme (26) can be directly obtained:

Theorem 3.2 Let u(xi, yj, tn) be the exact solution of (24) and smooth enough, un
i,j

 be the 
solution of the finite-difference scheme (26). Denote en

i,j
= u(xi, yj, tn) − un

i,j
 , 0 ≤ i ≤ M1 + 1 , 

0 ≤ j ≤ M2 + 1 , 0 ≤ n ≤ N . For any Q ∈ � , there exists a positive constant c4 , such that

The remaining and important thing is to give the feature of the set � . However, it seems 
difficult to depict all the elements of � . In the following Corollaries 3.1 and 3.2, we show 
that there are some matrices belong to � when the variable coefficients d(x, y), e(x, y) sat-
isfy some certain conditions, and this ensures that � is not an empty set which is necessary 
for the stability and convergence. We discuss the existence of those matrices in two cases.

• Case 1 When d(x, y), e(x, y) are separable respect to x and y.

In this case, we denote d(x, y) = d̃(x)d̂(y) and e(x, y) = ẽ(x)ê(y) , and take

Then, D = D̂⊗ D̃ , E = Ê⊗ Ẽ.

Corollary 3.1 If d̃− ≤ d̃(x) ≤ d̃+ and ê− ≤ ê(y) ≤ ê+ for some positive constants d̃−, d̃+, ê− 
and ê+ , then Ê−1 ⊗ D̃−1 ∈ �.

Proof We have A =
1

2h𝛼
1

(D̂⊗ D̃G𝛼) +
1

2h
𝛽

2

(ÊG𝛽 ⊗ Ẽ) , then

which is negative semi-definite. Thus Ê−1 ⊗ D̃−1 ∈ � . 

1

�
h
(
un−1 + un

)T
Q
(
un − un−1

)

= h
(
un−1 + un

)T
QA

(
un−1 + un

)
+ h

(
un−1 + un

)T
Qf

n−
1

2 .

h
(
un−1 + un

)T
QA

(
un−1 + un

)
= h

(
un−1 + un

)T
H(QA)

(
un−1 + un

) ≤ 0.

h(un)TQun − h(un−1)TQun−1 ≤ �h(un)TQf n−
1

2 + �h(un−1)TQf n−
1

2 .

‖en‖ ≤ c4(�
2 + h2

1
+ h2

2
).

D̃ = diag(d̃1, d̃2,⋯ , d̃M1
), D̂ = (d̂1, d̂2,⋯ , d̂M2

),

Ẽ = diag(ẽ1, ẽ2,⋯ , ẽM1
), Ê = (ê1, ê2,⋯ , êM2

).

H
(
(Ê−1 ⊗ D̃−1)A

)
=

1

4h𝛼
1

(
Ê−1D̂⊗ (G𝛼 + GT

𝛼
)
)
+

1

4h
𝛽

2

(
(G𝛽 + GT

𝛽
)⊗ D̃−1Ẽ

)
,
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• Case 2 When d(x, y) and e(x, y) are non-separable.

As in Lemma 2.4, we denote

where g(�, x) is the generating function of the matrix G�.

Corollary 3.2 

 (i) Assume that

Then, I ∈ � if the following conditions are fulfilled: 

where �d(y) = �d
max

(y) when d(x,  y) is a concave function of x, �d(y) = �d
min

(y) when 
d(x, y) is a convex function of x, �e(x) = �e

max
(x) when e(x, y) is a concave function of y, 

�e(x) = �e
min

(x) when e(x, y) is a convex function of y.

 (ii) Assume that

Then, D−1 ∈ � if the following condition is fulfilled: 

where �e� (x) = �e�

max
(x) when e(x,y)

d(x,y)
 is a concave function of y, and �e� (x) = �e�

min
(x) when e(x,y)

d(x,y)
 

is a convex function of y.

 (iii) Assume that

Then, E−1 ∈ � if the following condition is fulfilled: 

�� ≜ min
x

ℜ[−g(�, x)]

|g(�, x)| =
|||||
cos

(
�

2
�

)|||||
,

0 ≤ 𝜅d
min

(y) ≤ d(x, y) ≤ 𝜅d
max

(y) < ∞ for every (x, y),

0 ≤𝜅e
min

(x) ≤ e(x, y) ≤ 𝜅e
max

(x) < ∞ for every (x, y).

(27)�d(y) −

√
2
�
�d
max

(y) − �d
min

(y)
�

��
≥ 0 for every y,

(28)�e(x) −

√
2
�
�e
max

(x) − �e
min

(x)
�

��
≥ 0 for every x,

0 ≤ 𝜅e�

min
(x) ≤ e(x, y)

d(x, y)
≤ 𝜅e�

max
(x) < ∞ with 0 < d(x, y) < ∞.

�e� (x) −

√
2
�
�e�

max
(x) − �e�

min
(x)

�
��

≥ 0,

0 ≤ 𝜅d�

min
(y) ≤ d(x, y)

e(x, y)
≤ 𝜅d�

max
(y) < ∞ with 0 < e(x, y) < ∞.
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where �d� (y) = �d�

max
(y) when d(x,y)

e(x,y)
 is a concave function of x, and �d� (y) = �d�

min
(y) when d(x,y)

e(x,y)
 

is a convex function of x.

Proof We first prove (i) . Denote

Take D̃ = D − Kd ⊗ I and Ẽ = E − I ⊗ Ke . Then,

For any � = [u1,1, u2,1,⋯ , uM1,1
, u1,2,⋯ , uM1,2

,⋯ , u1,M2
,⋯ , uM1,M2

]T , we have

Referring to the proof of Theorem 2.3, it is easy to obtain

where

Therefore,

which implies that H(A) is negative semi-definite if the conditions in (27)–(28) hold. 
Hence, I ∈ �.

Similarly, one can show (ii) and (iii).

�d� (y) −

√
2
�
�d�

max
(y) − �d�

min
(y)

�
��

≥ 0,

Kd = diag
(
kd(y1), k

d(y2),⋯ , kd(yM2
)
)
, Ke = diag

(
ke(x1), k

e(x2),⋯ , ke(xM1
)
)
.

A =
1

2h𝛼

[
(Kd ⊗ G𝛼) + D̃(I ⊗ G𝛼)

]
+

1

2h𝛽

[
(G𝛽 ⊗ Ke) + Ẽ(G𝛽 ⊗ I)

]
.

2�TH(A)� =
1

2h𝛼

[
�T

(
Kd ⊗ (G𝛼 + GT

𝛼
)
)
� + �T

(
D̃(I ⊗ G𝛼) + (I ⊗ GT

𝛼
)D̃

)
�
]

+
1

2h𝛽

[
�T

(
(G𝛽 + GT

𝛽
)⊗ Ke

)
� + �T

(
Ẽ(G𝛽 ⊗ I) + (GT

𝛽
⊗ I)Ẽ

)
�
]
.

����
T
�
D̃(I ⊗ G𝛼) + (I ⊗ GT

𝛼
)D̃

�
�
��� ≤

−
√
2

𝜍𝛼
�T

�
K𝛼 ⊗ (G𝛼 + GT

𝛼
)
�
�,

�����
T
�
Ẽ(G𝛽 ⊗ I) + (GT

𝛽
⊗ I)Ẽ

�
�
���� ≤

−
√
2

𝜍𝛽
�T

�
(G𝛽 + GT

𝛽
)⊗ K𝛽

�
�,

K� = diag
(
�d
max

(y1) − �d
min

(y1), �
d
max

(y2) − �d
min

(y2),⋯ , �d
max

(yM2
) − �d

min
(yM2

)
)
,

K� = diag
(
�e
max

(x1) − �e
min

(x1), �
e
max

(x2) − �e
min

(x2),⋯ , �e
max

(xM1
) − �e

min
(xM1

)
)
.

−2�TH(A)� ≥ 1

2h𝛼
�T

��
Kd −

√
2

𝜍𝛼
K𝛼

�
⊗ (−G𝛼 − GT

𝛼
)

�
�

+
1

2h𝛽
�T

�
(−G𝛽 − GT

𝛽
)⊗

�
Ke −

√
2

𝜍𝛽
K𝛽

��
�,
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3.2  The Two‑Dimensional Toeplitz Preconditioner

In this subsection, we extend the Toeplitz preconditioner to the 2-D case. To solve (26), it 
is equivalent to solve the following N linear systems:

where Ik denotes the k × k identity, � = IM̂ + DBx + EBy , Bx = −𝜂x(IM2
⊗ G𝛼) , 

By = −𝜂y(G𝛽 ⊗ IM1
) , M̂ = M1M2 , �x = �∕(2h�

1
) , �y = �∕(2h

�

2
) , �n = (I

M̂
− DB

x
− EB

y
)

⋅un−1 + ��
n−

1

2 . Our two-level Toeplitz preconditioner for preconditioning (29) is defined as 
follows:

where d̄ = ����(D) , ē = ����(E) . The preconditioned Krylov subspace method with the 
preconditioner � is employed to solve the linear systems in (29). Hence, in each iteration, it 
requires to compute some matrix–vector multiplications like �−1� for some randomly given 
� , i.e., it requires to solve the linear system of the form:

Next, we introduce a multigrid method to solve (31).
For the choices of coarse-gird matrices, interpolation, and restriction, we refer to the 

geometric grid coarsening, piecewise linear interpolation, and its transpose. For the choice 
of pre-smoothing iteration, we refer to the block Jacobi iteration, that is

where �x = IM̂ + d̄Bx is the block diagonal part of � , and �k is an initial guess of � in (31). 
Since �x is a block diagonal matrix with identical Toeplitz blocks, its inversion, �−1

x
 can 

be computed efficiently with the help of Gohberg–Semencul-type formula as discussed in 
Sect. 2. For the choice of post-smoother, we refer to the block Jacobi iteration for the per-
muted linear system, that is

where �y = IM̂ + ēBy , �k is an initial guess of � in (31). One can easily find a x-y ordering 
permutation matrix � , such that

Thus, �−1
y

= �T(IM̂ − ē𝜂yIM1
⊗ G𝛽)

−1� , which means that the implementation of (33) still 
requires to compute an inversion of a block diagonal matrix with identical Toeplitz blocks. 
Therefore, (33) can still be fast implemented using the Gohberg–Semencul-type formula. 
Similar to proof of Proposition 2.1, one can prove the following proposition.

Proposition 3.1 � defined in (30) is invertible for any � ∈ (1, 2).

Theorem 3.3 Let d(x, y) ≡ �1a(x, y) and e(x, y) ≡ �2a(x, y) for any (x, y) ∈ � with nonnega-
tive constants �1 and �2 . Assume

(29)�un = bn, n = 1, 2,⋯ ,N,

(30)� = IM̂ + d̄Bx + ēBy,

(31)�� = �.

(32)�k+1 = �k + �−1
x
(� − ��k),

(33)�k+1 = �k + �−1
y
(� − ��k),

(34)�y = �T(IM̂ − ē𝜂yIM1
⊗ G𝛽)�.
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 (i) a(x, y) ∈ [ǎ, â] with ǎ > 0 for any (x, y) ∈ �;
 (ii) for any x ∈ (xL, xR) , a(x, ⋅) is convex or concave on y ∈ (yL, yR) ; and for any 

y ∈ (yL, yR) , a(⋅, y) is convex or concave on x ∈ (xL, xR);
 (iii) č1 = inf

y∈(yL,yR)
[M̃1(y) −

√
2(M̂1(y) − M̌1(y))∕𝜍𝛼] > 0 with M̂1(y) =∶ sup

x∈(xL,xR)

a(x, y) 

and M̌1(y) =∶ inf
x∈(xL,xR)

a(x, y) , 

č2 = inf
x∈(xL,xR)

[M̃2(x) −
√
2(M̂2(x) − M̌2(x))∕𝜍𝛽] > 0 with M̂2(x) =∶ sup

y∈(yL,yR)

a(x, y) 

and M̌2(x) =∶ inf
y∈(yL,yR)

a(x, y) , 

Then, for any positive integers, N, M1 and M2 , it holds 𝛴2(��−1) ⊂ [š, ŝ] and thus

where š , ŝ are positive constants independent of � , h1 , and h2,

Proof Denote

with ai,j = a(xi, yj) . Also, denote ā = ����(Da) . By straightforward calculation,

where W = �1Bx + �2By . Rewrite Da = diag(Da,1,Da,2,⋯ ,Da,M2
) with D

a,i = diag 
(a1,i, a2,i,⋯ , a

M1,i
) . Then, it is easy to see that BT

x
Da + DaBx = diag(H1,H2,⋯ ,HM2

) 

with Hi = −�x(Da,iG� + GT
�
Da,i) . Denote l1(y) = M̃1(y) −

√
2(M̂1(y) − M̌1(y))∕𝜍𝛼 and 

s1(y) = M̃1(y) +
√
2(M̂1(y) − M̌1(y))∕𝜍𝛼 . Then, applying Theorem  2.3 to (i)–(iii) , we 

have

M̃1(y) =

{
M̌1(y) if a(⋅, y) is convex,

M̂1(y) if a(⋅, y) is concave,

M̃2(x) =

{
M̌2(x) if a(x, ⋅) is convex,

M̂2(x) if a(x, ⋅) is concave.

sup
M1,M2,N≥1

cond(��−1) ≤ √
ŝ∕š,

š = min

�
č1

â
,
č2

â
,
ǎ2

â2

�
, ŝ = max

�
ĉ1

ǎ
,
ĉ2

ǎ
,
â2

ǎ2

�
,

ĉ1 = sup
y∈(yL,yR)

�
M̃1(y) +

√
2

𝜍𝛼
(M̂1(y) − M̌1(y))

�
,

ĉ2 = sup
x∈(xL,xR)

�
M̃2(x) +

√
2

𝜍𝛽
(M̂2(x) − M̌2(x))

�
.

Da = diag(a1,1, a2,1,⋯ , aM1,1
, a1,2, a2,2,⋯ , aM1,2

,⋯ , a1,M2
, a2,M2

,⋯ , aM1,M2
)

(35)�T� = IM̂ + 𝜈1(B
T
x
Da + DaBx) + 𝜈2(B

T
y
Da + DaBy) +WTD2

a
W,

(36)�T� = IM̂ + 𝜈1ā(B
T
x
+ Bx) + 𝜈2ā(B

T
y
+ By) + ā2WTW,

−č1𝜂x(G𝛼 + GT
𝛼
) ⪯ l1(yi)𝜂xG ⪯ Hi ⪯ s1(yi)𝜂xG ⪯ −ĉ1𝜂x(G𝛼 + GT

𝛼
).
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Therefore,

where the first “ ≺ ” is obvious. Recall the permutation matrix defined in (34). 
Denote B̃y ∶= �By�

T = −𝜂yIM1
⊗ G𝛽 , D̃a = diag(D̃a,1, D̃a,2,⋯ , D̃a,M1

) with 
D̃a,i = diag(ai,1, ai,2,⋯ , ai,M2

) . Then, it is easy to check that

Similarly to proof of (37), applying Theorem 2.3 to (i) , (ii) , and (iii) yields

Moreover, it is easy to see that

By (37)–(39),

For any non-zero vector y ∈ ℝ
M×1 , denote z = �−1y . Then, it holds

By (40),

By Proposition 2.2 and (41),

During the proof above, there is no constraint on M and N. Thus, for any N ≥ 1 , any M ≥ 1 , 
𝛴2(��−1) ⊂ [š, ŝ] and sup

N,M≥1
cond(��−1) ≤ √

ŝ∕š.

(37)� ≺ č1(B
T
x
+ Bx) ⪯ BT

x
Da + DaBx ⪯ ĉ1(B

T
x
+ Bx),

BT
y
Da + DaBy = �T(B̃T

y
D̃a + D̃aB̃y)�.

(38)
� ≺ č2(B

T
y
+ By) = č2�

T(B̃T
y
+ B̃y)� ⪯ BT

y
Da + DaBy ⪯ ĉ2�

T(B̃T
y
+ B̃y)�

= ĉ2(B
T
y
+ By).

(39)ǎ2WTW ⪯ WTD2
a
W ⪯ â2WTW.

(40)

� ≺ IM̂ + 𝜈1č1(B
T
x
+ Bx) + 𝜈2č2(B

T
y
+ By) + ǎ2WTW

⪯ �T�

⪯ IM̂ + 𝜈1ĉ1(B
T
x
+ Bx) + 𝜈2ĉ2(B

T
y
+ By) + â2WTW.

yT(��−1)T(��−1)y

yTy
=

zT�T�z

zT�T�z
.

(41)

0 <
zT[IM̂ + 𝜈1č1(B

T
x
+ Bx) + 𝜈2č2(B

T
y
+ By) + ǎ2WTW]z

zT[IM̂ + 𝜈1ā(B
T
x
+ Bx) + 𝜈2ā(B

T
y
+ By) + ā2WTW]z

≤ zT�T�z

zT�T�z

≤ zT[IM̂ + 𝜈1ĉ1(B
T
x
+ Bx) + 𝜈2ĉ2(B

T
y
+ By) + â2WTW]z

zT[IM̂ + 𝜈1ā(B
T
x
+ Bx) + 𝜈2ā(B

T
y
+ By) + ā2WTW]z

.

š ≤ min

{
č1

ā
,
č2

ā
,
ǎ2

ā2

}
≤ zT�T�z

zT�T�z
≤ max

{
ĉ1

ā
,
ĉ2

ā
,
â2

ā2

}
≤ ŝ.
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4  Numerical Experiments

In this section, we test several examples to support theoretical results of Theorems 2.2, 
3.2, and to show the efficiency of the Toeplitz preconditioner. We compare the proposed 
Toeplitz preconditioner with circulant preconditioners (two-level circulant preconditioner 
in the 2-D case) proposed in [16] and [14] and the Laplacian preconditioners proposed in 
[6, 26]. For fairness, the 2-D Laplacian preconditioner is implemented by the same multi-
grid method as the one used for the implementation of the proposed 2-D Toeplitz precon-
ditioner. We use � and � to denote the circulant preconditioner and Laplacian precondi-
tioner, respectively. The preconditioned generalized minimal residual (PGMRES) method 
is employed to solve various preconditioned systems of (7) and (26). We denote the PGM-
RES method with the Toeplitz preconditioner, the Circulant preconditioner and the Lapla-
cian preconditioner by PGMRES-T, PGMRES-C, and PGMRES-L, respectively. We note 
that these preconditioners are all used as right preconditioners in the implementation. The 
GMRES method employed in this paper is an un-restarted version with a maximal iteration 
number, 200.

The stopping criterion for PGMRES is set as ||�k||2||�0||2 ≤1E−7, where �k denotes the resid-
ual vector at the kth iteration. All numerical experiments are performed via MATLAB 
R2018a on a PC with system information: Ubuntu 18.04.1 LTS 64-bit and configuration: 
Intel(R) Core(TM) i5-7 500 T CPU 2.70 GHz× 4 15.6 GB RAM.

Recall that h is the spatial step-size for the one-dimensional discretization. We also set 
h1 = h2 = h in the 2-D discretization for the related experiments in this section. Define the 
error as

Denote by CPU, the running time by unit seconds. Denote by “iter”, the average of itera-
tion numbers of the PGMRES method for the N linear systems in (7) or (26).

Example 4.1 Consider a one-dimensional OSFDE with [xL, xR] = [0, 1] , T = 1 , and

The explicit expression of the exact solution for the example is u(x, t) = 26x3(1 − x)3t3.
To show the convergence order of the proposed scheme on Example 4.1, we plot the 

values of ln(E(h, �)) with different h and fixed � in Fig. 1. As illustrated in Fig. 1, the values 
of ln(E(h, �)) are distributed like a straight line with slope “2”, which demonstrates the 
second-order accuracy in space of the proposed scheme.

We test the three preconditioners on Example 4.1, the results of which are listed in 
Table 1. Overall, the choices of N, N = 1 typically maximize the condition number of the 
unpreconditioned matrix, which is difficult to fast solve. Hence, reporting the results of the 
three preconditioners in the case of N = 1 is convincing and representative for testing their 
performance, which is why we fix N = 1 in Table 1. Since E(h, �) of the three solvers are 
almost the same, the results of E(h, �) are skipped in Table 1. From Table 1, we see that 
the iteration numbers of PGMRES-T and PGMRES-C are stable with respect to M while 

E(h, �) = max
0≤n≤N ‖e

n‖.

d(x) = cos(�x∕2) + 0.1,

f (x, t) = 192x3(1 − x)3t2 − 26t3d(x)

6∑
k=3

(
3

k − 3

)
k!xk−�

(−1)k−1� (k + 1 − �)
.
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the iteration numbers of PGMRES-L keep increasing as M increases. However, since the 
problem in Example 4.1 has only one-spatial dimension and the matrix size is not large, the 
three solvers are all efficient in terms of computational time in regardless of the difference 
in iteration numbers.

-6.5 -6 -5.5 -5 -4.5 -4
ln(h)

-14

-13

-12

-11

-10

-9

-8

ln
(E
(h
,
))

=1.2
=1.5
=1.8

ln(E(h, ))=2*(ln(h))

Fig. 1  ln(E(h, �)) when � = 2−11

Table 1  Performance of three 
preconditioners on Example 4.1 
with N = 1

� M PGMRES-T PGMRES-L PGMRES-C

iter CPU/s iter CPU/s iter CPU/s

1.5 29 23 0.03 72 0.03 25 0.01

210 23 0.05 87 0.06 25 0.02
211 23 0.09 105 0.09 25 0.04

1.6 29 23 0.02 49 0.02 25 0.01
210 23 0.05 57 0.04 25 0.02
211 23 0.09 67 0.06 25 0.04

1.7 29 23 0.02 33 0.01 25 0.01
210 23 0.04 37 0.02 25 0.02
211 23 0.09 42 0.04 25 0.04

1.8 29 23 0.02 21 0.01 25 0.01
210 23 0.04 23 0.01 25 0.02
211 23 0.09 25 0.02 25 0.04

1.9 29 23 0.02 12 0.01 24 0.01
210 23 0.04 13 0.01 25 0.02
211 23 0.09 14 0.01 25 0.04



235Communications on Applied Mathematics and Computation (2020) 2:215–239 

1 3

Example 4.2 Consider a 2-D OSFDE with [xL, xR] = [yL, yR] = [0, 2] , T = 1 , and

The explicit expression of the exact solution for the example is u(x, y, t) = x4(2 − x)4y4(2 − y)4t3.

To show the convergence order of the proposed scheme on Example 4.2, we plot the 
values of ln(E(h, �)) with different h and fixed � in Fig. 2. As illustrated in Fig. 2, the values 
of ln(E(h, �)) are distributed like a straight line with slope “2”, which demonstrates the 
second-order accuracy in space of the proposed scheme in the 2-D case.

We test the three preconditioners on Example 4.2, the results of which are listed in 
Table 2. Again, we fix N = 1 in Table 2. Since E(h, �) of the three solvers are almost the 
same, the results of E(h, �) are skipped in Table 2. Table 2 shows that the iteration numbers 
of PGMRES-T are more stable with respect to variation of (�, �) and M than that of PGM-
RES-L and PGMRES-C. Moreover, since PGMRES-T has smaller iteration numbers on 
Example 4.2 than those of PGMRES-L and PGMRES-C, PGMRES-T solver requires less 
computation time. Hence, Table 2 demonstrates that the proposed Toeplitz preconditioner 
outperforms the other two preconditioners for Example 4.2.

The convexity/concavity assumption presented in (ii) of Theorem  3.3 implies that 
the diffusion coefficients d and e are continuous functions. However, this is only for 

d(x, y) = x2 + y2 + 20, e(x, y) = sin
[
�

24
(x + 4)

]
+ sin

[
�

24
(y + 4)

]
,

f (x, y, t) = 3x4(2 − x)4y4(2 − y)4t2 − t3y4(2 − y)4d(x, y)

8∑
k=4

(
4

k − 4

)
28−kk!xk−�

(−1)kΓ(k + 1 − �)

− t3x4(2 − x)4e(x, y)

8∑
k=4

(
4

k − 4

)
28−kk!yk−�

(−1)kΓ(k + 1 − �)
.

-5 -4.5 -4 -3.5 -3 -2.5
ln(h)
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-9

-8

-7

-6

-5

-4

ln
(E
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,
))
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ln(E(h, ))=2*(ln(h))

Fig. 2  ln(E(h, �)) when � = 2−7
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theoretical consideration. Actually, the proposed Toeplitz preconditioner also works for 
the OSFDE with discontinuous coefficients. To demonstrate this, we test the three solv-
ers PGMRES-L and PGMRES-C, PGMRES-T on Example 4.3.

Example 4.3 Consider a 2-D OSFDE with [xL, xR] = [yL, yR] = [0, 2] , T = 1 , and

The explicit expression of the exact solution for the example is u(x, y, t) = x4(2 − x)4y4

⋅(2 − y)4t3.

We solve the three preconditioners on Example 4.3, the results of which are listed in 
Table 3. Since E(h, �) of the three solvers are almost the same, the results of E(h, �) are 
skipped in Table 2. Note that the coefficients d and e are both discontinuous. From Table 3, 
we see that the iteration numbers of PGMRES-T are stable with respect to changes of M, 
which demonstrates the robustness of the proposed Toeplitz preconditioner even for the 
case of discontinuous coefficients. Table 3 also shows that PGMRES-T is the most efficient 
one among the three solvers in terms of CPU measure for sufficiently large M.

d(x, y) =

{
1.1, x ≥ 1,

1, otherwise,
e(x, y) =

{
1.1, y ≤ 1,

1, otherwise,

f (x, y, t) = 3x4(2 − x)4y4(2 − y)4t2 − t3y4(2 − y)4d(x, y)

8∑
k=4

(
4

k − 4

)
28−kk!xk−�

(−1)kΓ(k + 1 − �)

− t3x4(2 − x)4e(x, y)

8∑
k=4

(
4

k − 4

)
28−kk!yk−�

(−1)kΓ(k + 1 − �)
.

Table 2  Performance of three 
preconditioners on Example 4.2 
with N = 1

(�, �) M PGMRES-T PGMRES-L PGMRES-C

iter CPU/s iter CPU/s iter CPU/s

(1.6,1.9) 29 12 2.01 35 5.00 47 2.73

210 12 8.47 37 24.77 57 31.25
211 13 47.02 38 115.55 71 171.19

(1.8,1.9) 29 14 2.32 26 3.51 43 4.10
210 15 10.71 28 17.74 52 21.16
211 16 58.26 30 87.07 64 186.62

(1.9,1.9) 29 15 2.46 28 3.82 40 3.15
210 16 11.37 30 19.13 46 24.66
211 17 61.95 32 92.89 54 121.69

(1.8,1.8) 29 15 2.47 28 3.72 39 4.67
210 16 11.37 30 19.11 44 17.06
211 16 58.17 32 92.76 51 87.10

(1.6,1.6) 29 16 2.61 41 5.88 36 2.01
210 16 11.35 43 29.96 40 12.20
211 17 61.91 46 148.58 44 70.12
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5  Concluding Remarks

We study the second-order schemes for time-dependent 1-D and 2-D OSFDEs with vari-
able diffusion coefficients, in which the implicit Crank–Nicolson scheme and WSGD for-
mula are employed to discretize the temporal and the spatial derivatives, respectively. The-
oretically, we have established the unconditional stability and second-order convergence 
for the one-dimensional scheme without additional assumption, and for the two-dimen-
sional scheme with certain assumptions on diffusion coefficients presented in Corollaries 
3.1–3.2. To accelerate the solution process, Toeplitz preconditioners have been proposed 
for both one- and two-dimensional schemes. The condition numbers of the preconditioned 
matrices have been proven to be bounded by a constant independent of discretization step-
sizes under certain assumptions on the diffusion coefficients presented in Theorems 2.4, 
2.5, and 3.3. Numerical results reported have shown the second-order convergence rate of 
the proposed schemes and the efficiency of the proposed preconditioners.

Acknowledgements The authors would like to thank the editor and referees for valuable comments and sug-
gestions, which helped to improve the quality of the manuscript.
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