×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
THE STATE KEY L... [13]
Faculty of Scie... [12]
Faculty of Healt... [1]
Authors
YUEN KA VENG [7]
YAN WANGJI [6]
SONG YONGHUA [2]
KUOK SIN CHI [2]
ZHOU WANHUAN [1]
HUI HONGXUN [1]
More...
Document Type
Journal article [18]
Date Issued
2024 [5]
2023 [1]
2022 [4]
2021 [3]
2020 [3]
2018 [1]
More...
Language
英語English [16]
中文Chinese [1]
Source Publication
IEEE Transaction... [3]
Mechanical Syste... [3]
Journal of Sound... [2]
Applied Sciences... [1]
Bulletin of Math... [1]
Computer Methods... [1]
More...
Indexed By
SCIE [16]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 18
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification
Journal article
Kuok, Sin Chi, Yuen, Ka Veng, Dodwell, Tim, Girolami, Mark. Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification[J]. Knowledge-Based Systems, 2024, 301, 112272.
Authors:
Kuok, Sin Chi
;
Yuen, Ka Veng
;
Dodwell, Tim
;
Girolami, Mark
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
IF:
7.2
/
7.4
|
Submit date:2024/08/05
Bayesian Inference
Broad Bayesian Learning
Imputation
Missing Data
Uncertainty Quantification
Bayesian time domain approach for damping identification and uncertainty quantification in stay cables using free vibration response
Journal article
Feng, Zhouquan, Zhang, Jiren, Xuan, Xinyan, Wang, Yafei, Hua, Xugang, Chen, Zhengqing, Yan, Wangji. Bayesian time domain approach for damping identification and uncertainty quantification in stay cables using free vibration response[J]. Engineering Structures, 2024, 315, 118477.
Authors:
Feng, Zhouquan
;
Zhang, Jiren
;
Xuan, Xinyan
;
Wang, Yafei
;
Hua, Xugang
; et al.
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
5.6
/
5.8
|
Submit date:2024/08/05
Bayesian Inference
Damping Ratios
Free Vibration
Modal Identification
Stay Cables
Time Domain
Uncertainty Quantification
Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics
Journal article
Shuttleworth, Joseph G., Lei, Chon Lok, Whittaker, Dominic G., Windley, Monique J., Hill, Adam P., Preston, Simon P., Mirams, Gary R.. Empirical Quantification of Predictive Uncertainty Due to Model Discrepancy by Training with an Ensemble of Experimental Designs: An Application to Ion Channel Kinetics[J]. Bulletin of Mathematical Biology, 2024, 86(1), 2.
Authors:
Shuttleworth, Joseph G.
;
Lei, Chon Lok
;
Whittaker, Dominic G.
;
Windley, Monique J.
;
Hill, Adam P.
; et al.
Favorite
|
TC[WOS]:
2
TC[Scopus]:
4
IF:
2.0
/
2.1
|
Submit date:2024/02/22
Discrepancy
Experimental Design
Ion Channel
Mathematical Model
Misspecification
Uncertainty Quantification
Machine Learning-Based Probabilistic Forecasting of Wind Power Generation: A Combined Bootstrap and Cumulant Method
Journal article
Wan, Can, Cui, Wenkang, Song, Yonghua. Machine Learning-Based Probabilistic Forecasting of Wind Power Generation: A Combined Bootstrap and Cumulant Method[J]. IEEE Transactions on Power Systems, 2024, 39(1), 1370-1383.
Authors:
Wan, Can
;
Cui, Wenkang
;
Song, Yonghua
Favorite
|
TC[WOS]:
6
TC[Scopus]:
10
IF:
6.5
/
7.4
|
Submit date:2024/02/22
Bootstrap
Cumulant
Machine Learning
Probabilistic Forecasting
Uncertainty Quantification
Wind Power
Physics-Informed Neural Networks for Settlement Analysis of the Immersed Tunnel of the Hong Kong-Zhuhai-Macau Bridge
Journal article
He, Shu Yu, Zhou, Wan Huan, Tang, Cong. Physics-Informed Neural Networks for Settlement Analysis of the Immersed Tunnel of the Hong Kong-Zhuhai-Macau Bridge[J]. International Journal of Geomechanics, 2024, 24(1), 04023241.
Authors:
He, Shu Yu
;
Zhou, Wan Huan
;
Tang, Cong
Favorite
|
TC[WOS]:
4
TC[Scopus]:
6
IF:
3.3
/
3.5
|
Submit date:2024/02/22
Foundation Modulus
Multibeam Model
Physics-informed Neural Networks
Settlement
Uncertainty Quantification
Bayesian synergistic metamodeling (BSM) for physical information infused data-driven metamodeling
Journal article
Kuok, Sin Chi, Yuen, Ka Veng. Bayesian synergistic metamodeling (BSM) for physical information infused data-driven metamodeling[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 419, 116680.
Authors:
Kuok, Sin Chi
;
Yuen, Ka Veng
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
IF:
6.9
/
6.7
|
Submit date:2024/02/22
Bayesian Inference
Data-driven Modeling
Model Class Selection
Physical-inspired Modeling
Synergistic Metamodeling
Uncertainty Quantification
A statistical influence line identification method using Bayesian regularization and a polynomial interpolating function
Journal article
Zhi-Wei Chen, Long Zhao, Wang-Ji Yan, Ka-Veng Yuen, Chen Wu. A statistical influence line identification method using Bayesian regularization and a polynomial interpolating function[J]. Structural Control & Health Monitoring, 2022, 29(11), e3080.
Authors:
Zhi-Wei Chen
;
Long Zhao
;
Wang-Ji Yan
;
Ka-Veng Yuen
;
Chen Wu
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
IF:
4.6
/
5.5
|
Submit date:2022/08/29
Bayesian Analysis
Bil Identification
Regularization Technique
Structural Health Monitoring
Uncertainty Quantification
Theoretical Methods and Application Prospects for Uncertainty Quantification in Distribution Network Operation Under the Influence of Stochastic Source-load
Journal article
Han, Wang, Xiaoyuan, Xu, Zheng, Yan, Hongxun, Hui, Xiaotao, Fang. Theoretical Methods and Application Prospects for Uncertainty Quantification in Distribution Network Operation Under the Influence of Stochastic Source-load[J]. Journal of Global Energy Interconnection, 2022, 5(3), 230-241.
Authors:
Han, Wang
;
Xiaoyuan, Xu
;
Zheng, Yan
;
Hongxun, Hui
;
Xiaotao, Fang
Favorite
|
TC[Scopus]:
1
|
Submit date:2024/01/25
Distribution Network
Global Sensitivity Analysis
Multi-fidelity Model
Stochastic Source-load
Uncertainty Quantification
Structural Assessment under Uncertain Parameters via the Interval Optimization Method Using the Slime Mold Algorithm
Journal article
Ghiasi, Ramin, Noori, Mohammad, Silik, Ahmed, Wang, Tianyu, Pozo, Francesc, Altabey, Wael A.. Structural Assessment under Uncertain Parameters via the Interval Optimization Method Using the Slime Mold Algorithm[J]. Applied Sciences (Switzerland), 2022, 12(4), 1876.
Authors:
Ghiasi, Ramin
;
Noori, Mohammad
;
Silik, Ahmed
;
Wang, Tianyu
;
Pozo, Francesc
; et al.
Favorite
|
TC[WOS]:
10
TC[Scopus]:
22
IF:
2.5
/
2.7
|
Submit date:2022/03/04
Model Updating Method
Non‐probabilistic Structural Damage Identification
Slime Mold Algorithm
Uncertainty Quantification
Structural anomaly detection based on probabilistic distance measures of transmissibility function and statistical threshold selection scheme
Journal article
Yan, Wang Ji, Chronopoulos, Dimitrios, Yuen, Ka Veng, Zhu, Yi Chen. Structural anomaly detection based on probabilistic distance measures of transmissibility function and statistical threshold selection scheme[J]. Mechanical Systems and Signal Processing, 2022, 162(108009).
Authors:
Yan, Wang Ji
;
Chronopoulos, Dimitrios
;
Yuen, Ka Veng
;
Zhu, Yi Chen
Favorite
|
TC[WOS]:
44
TC[Scopus]:
46
IF:
7.9
/
8.0
|
Submit date:2021/09/10
Transmissibility Function
Bayesian Analysis
Uncertainty Quantification
Probabilistic Distance Measure
Damage Detection
Structural Health Monitoring