UM

Browse/Search Results:  1-10 of 14 Help

Selected(0)Clear Items/Page:    Sort:
Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver Journal article
Wang, Jingfeng, Hu, Guanghui. Towards the Efficient Calculation of Quantity of Interest from Steady Euler Equations I: A Dual-Consistent DWR-Based h-Adaptive Newton-GMG Solver[J]. Communications in Computational Physics, 2024, 35(3), 579-608.
Authors:  Wang, Jingfeng;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.6/2.9 | Submit date:2024/05/16
Dual Consistency  Dwr-based Adaptation  Finite Volume Method  Hadaptivity  Newton-gmg  Steady Euler Equations  
A NURBS-Enhanced Finite Volume Method for Steady Euler Equations with Goal-Oriented h-Adaptivity Journal article
Meng, Xucheng, Hu, Guanghui. A NURBS-Enhanced Finite Volume Method for Steady Euler Equations with Goal-Oriented h-Adaptivity[J]. Communications in Computational Physics, 2022, 32(2), 490-523.
Authors:  Meng, Xucheng;  Hu, Guanghui
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:2.6/2.9 | Submit date:2022/08/30
Steady Euler Equations  Nurbs-enhanced Finite Volume Method  Goal-oriented a Posteriori Error Estimation  Non-oscillatory K-exact Reconstruction  Point Inversion  
A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries Journal article
Meng, Xucheng, Gu, Yaguang, Hu, Guanghui. A Fourth-Order Unstructured NURBS-Enhanced Finite Volume WENO Scheme for Steady Euler Equations in Curved Geometries[J]. Communications on Applied Mathematics and Computation, 2021, 5(1), 315-342.
Authors:  Meng, Xucheng;  Gu, Yaguang;  Hu, Guanghui
Favorite | TC[WOS]:6 TC[Scopus]:3  IF:1.4/0 | Submit date:2022/08/31
Steady Euler Equations  Curved Boundary  Nurbs-enhanced Finite Volume Method  Weno Reconstruction  Secondary Reconstruction  
A NURBS-enhanced finite volume solver for steady Euler equations Journal article
MENG XUCHENG, HU GUANGHUI. A NURBS-enhanced finite volume solver for steady Euler equations[J]. Journal of Computational Physics, 2018, 77-92.
Authors:  MENG XUCHENG;  HU GUANGHUI
Favorite |   IF:3.8/4.5 | Submit date:2024/08/31
Nurbs  Curve Fitting  Steady Euler Equations  Non-oscillatory $k$-exact Reconstruction  Finite Volume Method  
A NURBS-enhanced finite volume solver for steady Euler equations Journal article
Meng, Xucheng, Hu, Guanghui. A NURBS-enhanced finite volume solver for steady Euler equations[J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 359, 77-92.
Authors:  Meng, Xucheng;  Hu, Guanghui
Favorite | TC[WOS]:11 TC[Scopus]:10  IF:3.8/4.5 | Submit date:2018/10/30
Nurbs  Curve Fitting  Steady Euler Equations  Non-oscillatory K-exact Reconstruction  Finite Volume Method  
A NURBS-enhanced finite volume solver for steady Euler equations Journal article
Meng,Xucheng, Hu,Guanghui. A NURBS-enhanced finite volume solver for steady Euler equations[J]. Journal of Computational Physics, 2018, 359, 77-92.
Authors:  Meng,Xucheng;  Hu,Guanghui
Favorite | TC[WOS]:11 TC[Scopus]:10  IF:3.8/4.5 | Submit date:2021/03/11
Curve Fitting  Finite Volume Method  Non-oscillatory K-exact Reconstruction  Nurbs  Steady Euler Equations  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Conference paper
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[C], EDINBURGH BLDG, SHAFTESBURY RD, CB2 8RU CAMBRIDGE, ENGLAND:CAMBRIDGE UNIV PRESS, 2017, 697-713.
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2018/10/30
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact  Nonlinear Scheme  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Journal article
Gao, Zhen, Hu, Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/13
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact Nonlinear Scheme  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Journal article
Gao,Zhen, Hu,Guanghui. High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields[J]. East Asian Journal on Applied Mathematics, 2017, 7(4), 697-713.
Authors:  Gao,Zhen;  Hu,Guanghui
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.2/1.0 | Submit date:2021/03/11
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact Nonlinear Scheme  
Adjoint-based an adaptive finite volume method for steady Euler equations with non-oscillatory k-exact reconstruction Journal article
Hu, Guanghui, Meng, Xucheng, Yi, Nianyu. Adjoint-based an adaptive finite volume method for steady Euler equations with non-oscillatory k-exact reconstruction[J]. Computers & Fluids, 2016, 139, 174-183.
Authors:  Hu, Guanghui;  Meng, Xucheng;  Yi, Nianyu
Favorite | TC[WOS]:21 TC[Scopus]:19 | Submit date:2019/02/13
Adjoint-based Error Estimation  H-adaptive Method  High Order Finite Volume Methods  Non-oscillatory K-exact Reconstruction  Steady Euler Equations