×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [6]
HENRY FOK PEARL ... [2]
Faculty of Socia... [1]
Authors
YUEN KA VENG [3]
MOK KAI MENG [2]
WONG FAI [2]
ZHOU WANHUAN [1]
CHEUNG SHU FAI [1]
XU JIE [1]
More...
Document Type
Journal article [6]
Conference paper [4]
Date Issued
2022 [1]
2020 [1]
2017 [1]
2016 [1]
2013 [1]
2012 [2]
More...
Language
英語English [9]
中文Chinese [1]
Source Publication
Procedia Enginee... [2]
CCL 2013: Chines... [1]
Journal of Zheji... [1]
Proceedings -201... [1]
Proceedings of t... [1]
Progress in Ocea... [1]
More...
Indexed By
SCIE [3]
CPCI-S [2]
CPCI-SSH [1]
SSCI [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 10
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Environmental regulations on viral abundance in the upper South China Sea inferred from statistical models
Journal article
Hu, Caiqin, Li, Xiangfu, Shi, Zhen, Xu, Jie. Environmental regulations on viral abundance in the upper South China Sea inferred from statistical models[J]. Progress in Oceanography, 2022, 208, 102900.
Authors:
Hu, Caiqin
;
Li, Xiangfu
;
Shi, Zhen
;
Xu, Jie
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
3.8
/
4.0
|
Submit date:2022/12/01
Environmental Factors
Generalized Boosted Model
Statistical Models
The South China Sea
Viral Abundance
Estimation of spatiotemporal response of rooted soil using a machine learning approach 基于机器学习算法估算根系土体特性的时空响应
Journal article
Cheng,Zhi liang, Zhou,Wan huan, Ding,Zhi, Guo,Yong xing. Estimation of spatiotemporal response of rooted soil using a machine learning approach 基于机器学习算法估算根系土体特性的时空响应[J]. Journal of Zhejiang University: Science A, 2020, 21(6), 462-477.
Authors:
Cheng,Zhi liang
;
Zhou,Wan huan
;
Ding,Zhi
;
Guo,Yong xing
Favorite
|
TC[WOS]:
16
TC[Scopus]:
15
IF:
3.3
/
2.9
|
Submit date:2021/03/11
Genetic Programming (Gp)
Simplified Statistical Model
Soil Suction
Spatiotemporal Variations
Tu413.7
Predicting ground-level ozone concentrations by adaptive Bayesian model averaging of statistical seasonal models
Journal article
K. M. Mok, K. V. Yuen, K. I. Hoi, K. M. Chao, D. Lopes. Predicting ground-level ozone concentrations by adaptive Bayesian model averaging of statistical seasonal models[J]. Stochastic Environmental Research and Risk Assessment, 2017, 32(5), 1283-1297.
Authors:
K. M. Mok
;
K. V. Yuen
;
K. I. Hoi
;
K. M. Chao
;
D. Lopes
Favorite
|
TC[WOS]:
10
TC[Scopus]:
12
IF:
3.9
/
3.6
|
Submit date:2018/10/30
Adaptive Bayesian Model Averaging
Kalman Filter
Model Switching
Ozone Prediction
Statistical Model
Random-effects models for meta-analytic structural equation modeling: review, issues, and illustrations
Journal article
Cheung,Mike W.L., Cheung,Shu Fai. Random-effects models for meta-analytic structural equation modeling: review, issues, and illustrations[J]. Research Synthesis Methods, 2016, 7(2), 140-155.
Authors:
Cheung,Mike W.L.
;
Cheung,Shu Fai
Favorite
|
TC[WOS]:
86
TC[Scopus]:
82
|
Submit date:2019/06/25
Meta-analysis
Meta-analytic Structural Equation Model
r Statistical Platform
Random-effects Model
Structural Equation Model
iCPE: A hybrid data selection model for SMT domain adaptation
Conference paper
Wang L., Wong D.F., Chao L.S., Lu Y., Xing J.. iCPE: A hybrid data selection model for SMT domain adaptation[C]:SPRINGER-VERLAG BERLIN, HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY, 2013, 280-290.
Authors:
Wang L.
;
Wong D.F.
;
Chao L.S.
;
Lu Y.
;
Xing J.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
4
|
Submit date:2018/12/24
Data Selection
Domain Adaptation
Hybrid Model
Similarity Metrics
Statistical Machine Translation
Korean-Chinese statistical translation model
Conference paper
Li S., Wong D.F., Chao L.S.. Korean-Chinese statistical translation model[C], 2012, 767-772.
Authors:
Li S.
;
Wong D.F.
;
Chao L.S.
Favorite
|
TC[Scopus]:
4
|
Submit date:2018/12/24
Factored Translation Model
Korean-chinese
Statistical Machine Translation
Modelling the Daily Maximum of the 8-hr Averaged Ozone Concentrations in Macau with Dynamic Statistical Models
Conference paper
Mok, K. M., Hoi, K. I., Yuen, K. V., Chao, K. M.. Modelling the Daily Maximum of the 8-hr Averaged Ozone Concentrations in Macau with Dynamic Statistical Models[C], Utrecht, 2012, 1-4.
Authors:
Mok, K. M.
;
Hoi, K. I.
;
Yuen, K. V.
;
Chao, K. M.
Favorite
|
|
Submit date:2022/07/27
Dynamic statistical model
Macau
Tropospheric ozone
Iterative Probabilistic Approach for Selection of Time-varying Model Classes
Journal article
Hoi, K. I., Yuen, K. V., Mok, K. M.. Iterative Probabilistic Approach for Selection of Time-varying Model Classes[J]. Procedia Engineering, 2011, 2585-2592.
Authors:
Hoi, K. I.
;
Yuen, K. V.
;
Mok, K. M.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
|
Submit date:2022/07/27
Bayesian
Kalman Filter
Model Class Selection
Statistical Model
Iterative Probabilistic Approach for Selection of TimeVarying Model Classes
Conference paper
K.I. Hoi, K.V. Yuen, K.M. Mok. Iterative Probabilistic Approach for Selection of TimeVarying Model Classes[C]:ELSEVIER SCIENCE BV, SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS, 2011, 2585-2592.
Authors:
K.I. Hoi
;
K.V. Yuen
;
K.M. Mok
Favorite
|
TC[WOS]:
1
TC[Scopus]:
1
|
Submit date:2019/02/12
Bayesian
Kalman Filter
Model Class Selection
Statistical Model
Research of predicting machine's remaining useful life based on statistical pattern recognition and auto-regressive and moving average model
Journal article
Liao W.-Z., Pan E.-S., Wang Y., Xi L.-F.. Research of predicting machine's remaining useful life based on statistical pattern recognition and auto-regressive and moving average model[J]. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45(7), 1000-1005.
Authors:
Liao W.-Z.
;
Pan E.-S.
;
Wang Y.
;
Xi L.-F.
Favorite
|
|
Submit date:2019/01/16
Auto-regressive and moving average (ARMA) model
Health index (HI)
Prediction
Remaining useful life (RUL)
Statistical pattern recognition (SPR)