UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force Journal article
Bai, Guo Peng, Er, Guo Kang, Iu, Vai Pan. A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force[J]. Reliability Engineering & System Safety, 2024, 250, 1102532G.
Authors:  Bai, Guo Peng;  Er, Guo Kang;  Iu, Vai Pan
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:9.4/8.1 | Submit date:2024/07/04
Fpk Equation  Non-smooth Damping  Ship Roll Motion  Sinusoidal Restoring Moment  
Non-stationary probabilistic analysis of non-linear ship roll motion due to modulated periodic and random excitations Journal article
Luo, Jie, Er, Guo Kang, Iu, Vai Pan, Ren, Ze Xin. Non-stationary probabilistic analysis of non-linear ship roll motion due to modulated periodic and random excitations[J]. Probabilistic Engineering Mechanics, 2024, 75, 103574.
Authors:  Luo, Jie;  Er, Guo Kang;  Iu, Vai Pan;  Ren, Ze Xin
Favorite | TC[WOS]:3 TC[Scopus]:3  IF:3.0/3.0 | Submit date:2024/02/22
Gaussian White Noise  Modulated  Non-stationary  Periodic  Ship Roll Motion  
Responses of Nonlinear Coupled Pitch-Roll Ship Motion under Poisson Impulses Conference paper
Zhu, H. T., Er, G. K., Iu, V. P.. Responses of Nonlinear Coupled Pitch-Roll Ship Motion under Poisson Impulses[C], 2011.
Authors:  Zhu, H. T.;  Er, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/08/28
Coupled Pitch-Roll  ship motion  nonlinear oscillator  Poisson white noise  
Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise Journal article
Er, G. K., Zhu, H. T., Iu, V. P., Kou, K. P.. Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise[J]. SCIENCE CHINA Technological Sciences, 2011, 1121-1125.
Authors:  Er, G. K.;  Zhu, H. T.;  Iu, V. P.;  Kou, K. P.
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:4.4/4.3 | Submit date:2022/08/28
Pprobability Density Function  Ship Roll Motion  Poisson White Noise  Stochastic Process  Nonlinearity  
Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise Journal article
Er G., Zhu H., Iu V., Kou K.. Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise[J]. Science China Technological Sciences, 2011, 54(5), 1121-1125.
Authors:  Er G.;  Zhu H.;  Iu V.;  Kou K.
Favorite | TC[WOS]:3 TC[Scopus]:5 | Submit date:2019/02/12
Nonlinearity  Poisson White Noise  Probability Density Function  Ship Roll Motion  Stochastic Process  
Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise Journal article
Er,Guokang, Zhu,Haitao, Iu,Vaipan, Kou,Kunpang. Probability density function solution to nonlinear ship roll motion excited by external Poisson white noise[J]. Science China Technological Sciences, 2011, 54(5), 1121-1125.
Authors:  Er,Guokang;  Zhu,Haitao;  Iu,Vaipan;  Kou,Kunpang
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:4.4/4.3 | Submit date:2021/03/09
Nonlinearity  Poisson White Noise  Probability Density Function  Ship Roll Motion  Stochastic Process  
PDF Solution to nonlinear ship roll motion excited by external Poisson white noise Conference paper
ER GuoKang, ZHU HaiTao, IU VaiPan, KOU KunPang. PDF Solution to nonlinear ship roll motion excited by external Poisson white noise[C], 2010.
Authors:  ER GuoKang;  ZHU HaiTao;  IU VaiPan;  KOU KunPang
Favorite |  | Submit date:2019/05/17
Probability Density Function  Ship Roll Motion  Poisson White Noise  Generalized Fpk Equation  
Probabilistic solutions to nonlinear random ship roll motion Journal article
Er, G. K., Iu, V. P.. Probabilistic solutions to nonlinear random ship roll motion[J]. Journal of Engineering Mechanics, 1999, 570-574.
Authors:  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:17 TC[Scopus]:19  IF:3.3/3.0 | Submit date:2022/08/28
Fokker-planck Equation  Ship Roll Motion  Nonlinear Random Vibration