UM

Browse/Search Results:  1-10 of 22 Help

Selected(0)Clear Items/Page:    Sort:
Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors Journal article
Luo, Jiahua, Gan, Yanfen, Vong, Chi Man, Wong, Chi Man, Chen, Chuangquan. Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors[J]. Neurocomputing, 2021, 457, 106-116.
Authors:  Luo, Jiahua;  Gan, Yanfen;  Vong, Chi Man;  Wong, Chi Man;  Chen, Chuangquan
Favorite | TC[WOS]:4 TC[Scopus]:6  IF:5.5/5.5 | Submit date:2021/12/08
Approximate Bayesian Regularization Priors  Relevance Vector Machine  Scalable Sparse Bayesian Learning  Sparse Bayesian Extreme Learning Machine  
Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors Journal article
Luo, J.H., Gan, Y.F., Vong, C. M., Wong, C.M., Chen, C.Q.. Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors[J]. Neurocomputing (SCI-E), 2021, 106-116.
Authors:  Luo, J.H.;  Gan, Y.F.;  Vong, C. M.;  Wong, C.M.;  Chen, C.Q.
Favorite |   IF:5.5/5.5 | Submit date:2022/08/09
Scalable Sparse Bayesian Learning  Approximate Bayesian Regularization Priors  Relevance Vector Machine  Sparse Bayesian Extreme Learning Machine  
Comparison study of hysteresis compensation of piezostage using feedforward combined with feedback control Conference paper
Yulong Zhang, Qingsong Xu. Comparison study of hysteresis compensation of piezostage using feedforward combined with feedback control[C], 2016, 5226-5231.
Authors:  Yulong Zhang;  Qingsong Xu
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2018/12/23
Bouc-wen Model  Hysteresis  Piezostage  Relevance Vector Machine (Rvm)  Sliding Mode Control (Smc)  
Modelling and prediction of diesel engine performance using relevance vector machine Journal article
Wong K.I., Wong, Pak Kin, Cheung C.S.. Modelling and prediction of diesel engine performance using relevance vector machine[J]. International Journal of Green Energy, 2015, 12(3), 265-271.
Authors:  Wong K.I.;  Wong, Pak Kin;  Cheung C.S.
Favorite | TC[WOS]:14 TC[Scopus]:20 | Submit date:2019/02/13
Artificial Neural Network  Data Scarcity  Diesel Engine Modelling  Engine Performance  Relevance Vector Machine  
Hybrid Model Predictive Controller for Engine Air-ratio Control Conference paper
Wong, P. K., Wong, H.C., Vong, C. M., Iong, T.M.. Hybrid Model Predictive Controller for Engine Air-ratio Control[C], U.S.A.:IEEE, 2015, 181-186.
Authors:  Wong, P. K.;  Wong, H.C.;  Vong, C. M.;  Iong, T.M.
Favorite |  | Submit date:2022/08/09
Engine air-ratio  wavelet relevance vector machine  model predictive control  discrete wavelet transform  
Hybrid model predictive controller for engine air-ratio control Conference paper
Wong, Pak Kin, Wong H.C., Iong T.M., Vong C.M.. Hybrid model predictive controller for engine air-ratio control[C], 2014, 181-186.
Authors:  Wong, Pak Kin;  Wong H.C.;  Iong T.M.;  Vong C.M.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/13
Discrete Wavelet Transform  Engine Air-ratio  Model Predictive Control  Wavelet Relevance Vector Machine  
Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine Journal article
Li H., Pan D., Chen C.L.P.. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44(7), 851.
Authors:  Li H.;  Pan D.;  Chen C.L.P.
Favorite | TC[WOS]:139 TC[Scopus]:166 | Submit date:2018/10/30
Health Monitoring  Mean Entropy  Prognostics  Relevance Vector Machine (Rvm)  Remaining Life  State-of-health (Soh)  
Diesel engine modelling using extreme learning machine under scarce and exponential data sets Journal article
Wong, P.K., Vong, C. M., Cheung, C. S., Wong, K. I.. Diesel engine modelling using extreme learning machine under scarce and exponential data sets[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems (SCI-E), 2013, 87-98.
Authors:  Wong, P.K.;  Vong, C. M.;  Cheung, C. S.;  Wong, K. I.
Favorite |   IF:1.0/1.1 | Submit date:2022/08/09
Diesel engine modelling  engine performance prediction  extreme learning machine  least squares support vector machine  relevance vector machine  data processing  
Diesel engine modelling using extreme learning machine under scarce and exponential data sets Journal article
Wong, Pak Kin, Vong C.M., Cheung C.S., Wong K.I.. Diesel engine modelling using extreme learning machine under scarce and exponential data sets[J]. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2013, 21(SUPPL.2), 87-98.
Authors:  Wong, Pak Kin;  Vong C.M.;  Cheung C.S.;  Wong K.I.
Favorite | TC[WOS]:5 TC[Scopus]:6  IF:1.0/1.1 | Submit date:2019/02/13
Diesel Engine Modeling  Engine Performance Prediction  Extreme Learning Machine  Least Squares Support Vector Machine  Relevance Vector Machine  Data Processing  
Modelling of Diesel Engine Performance using Advanced Machine Learning Methods under Scarce and Exponential Data Set Journal article
Wong, K.I., Wong, P. K., Cheung, C. S., Vong, C. M.. Modelling of Diesel Engine Performance using Advanced Machine Learning Methods under Scarce and Exponential Data Set[J]. Applied Soft Computing (SCI-E), 2013, 4428-4441.
Authors:  Wong, K.I.;  Wong, P. K.;  Cheung, C. S.;  Vong, C. M.
Favorite |   IF:7.2/7.0 | Submit date:2022/08/09
diesel engine modelling  engine performance  artificial neural network  relevance vector machine  least squares support vector machine  kernel based extreme learning machine  hybrid inference  data exponentiality  data scarcity