UM

Browse/Search Results:  1-10 of 17 Help

Selected(0)Clear Items/Page:    Sort:
SSS-EPC Method for the transient probabilistic solutions of multi-degree-of-freedom nonlinear stochastic dynamical systems Conference paper
Er, Guo-Kang, Luo, Jie, Bai, Guo-Peng, Iu, Vai Pan. SSS-EPC Method for the transient probabilistic solutions of multi-degree-of-freedom nonlinear stochastic dynamical systems[C], 2024.
Authors:  Er, Guo-Kang;  Luo, Jie;  Bai, Guo-Peng;  Iu, Vai Pan
Favorite |  | Submit date:2023/06/29
Transient Solution, Nonlinear Random Vibration, Mdof System, Fpk Equation  
Optimization-Oriented EPC Approach for Analyzing the Stochastic Nonlinear Oscillators with Displacement-Multiplicative and Additive Excitations Journal article
Bai, Guo Peng, Er, Guo Kang, Pan Iu, Vai, Lam, Chi Chiu. Optimization-Oriented EPC Approach for Analyzing the Stochastic Nonlinear Oscillators with Displacement-Multiplicative and Additive Excitations[J]. International Journal of Applied Mechanics, 2024, 16(1).
Authors:  Bai, Guo Peng;  Er, Guo Kang;  Pan Iu, Vai;  Lam, Chi Chiu
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.9/2.8 | Submit date:2024/02/22
Fpk Equation  Multiplicative Excitation  Nonlinear Stochastic Oscillator  Optimization-oriented Exponential–polynomial-closure  Random Vibration  
Investigation on the probabilistic solutions of random vibrations of geometrically nonlinear truss structures Report
2020
Authors:  E, G. K.;  Iu, V. P.
Favorite |  | Submit date:2022/07/16
Random vibration  geometrically nonlinear truss  MDOF systems  SSS-EPC method.  
Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion Journal article
Er, G. K., Iu, V. P., Du, H. E.. Probabilistic Solutions of a Stretched Beam Discretized with Finite Difference Scheme and Excited by Kanai-Tajimi Ground Motion[J]. Archives of Mechanics, 2019, 433-457.
Authors:  Er, G. K.;  Iu, V. P.;  Du, H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2022/08/26
Stretched Beam  Nonlinear Random Vibration  Fpk Equation  Kanai-tajimi Ground Motion  Finite Difference Scheme  
Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion Journal article
Er,G. K., Iu,V. P., Du,H. E.. Probabilistic solutions of a stretched beam discretized with finite difference scheme and excited by Kanai–Tajimi ground motion[J]. Archives of Mechanics, 2019, 71(4-5), 433-457.
Authors:  Er,G. K.;  Iu,V. P.;  Du,H. E.
Favorite | TC[WOS]:3 TC[Scopus]:12  IF:1.1/0.9 | Submit date:2021/03/09
Finite Difference Scheme  Fpk Equation  Kanai–tajimi Ground Motion  Nonlinear Random Vibration  Stretched Beam  
Probabilistic solutions of the stretched beam systems formulated by finite difference scheme and excited by gaussian white noise Conference paper
Er,Guo Kang, Iu,Vai Pan, Wang,Kun, Du,Hai En. Probabilistic solutions of the stretched beam systems formulated by finite difference scheme and excited by gaussian white noise[C]:Springer, 2019, 99-114.
Authors:  Er,Guo Kang;  Iu,Vai Pan;  Wang,Kun;  Du,Hai En
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/09
Finite Difference  Fpk Equation  Mdof System  Nonlinear Random Vibration  Sss-epc Method  Stretched Beam  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise Journal article
Er,G. K., Wang,K., Iu,V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2018, 18(4).
Authors:  Er,G. K.;  Wang,K.;  Iu,V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2021/03/09
Cable System  Filtered Gaussian White Noise  Nonlinear Random Vibration  Probabilistic Solution  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise Journal article
Er G.K., Wang K., Iu V.P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2018, 18(4).
Authors:  Er G.K.;  Wang K.;  Iu V.P.
Favorite | TC[WOS]:10 TC[Scopus]:12 | Submit date:2019/02/12
Cable System  Filtered Gaussian White Noise  Nonlinear Random Vibration  Probabilistic Solution  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise Journal article
Er, G. K., Wang, K., Iu, V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise[J]. INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS, 2018, 18(4).
Authors:  Er, G. K.;  Wang, K.;  Iu, V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2018/10/30
Nonlinear Random Vibration  Cable System  Probabilistic Solution  Filtered Gaussian White Noise  
Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise Journal article
Er, G. K., Wang, K., Iu, V. P.. Probabilistic Solutions of the In-Plane Nonlinear Random Vibrations of Shallow Cables Under Filtered Gaussian White Noise[J]. International Journal of Structural Stability and Dynamics, 2017, 1850062-1-1850062-15.
Authors:  Er, G. K.;  Wang, K.;  Iu, V. P.
Favorite | TC[WOS]:10 TC[Scopus]:12  IF:3.0/2.9 | Submit date:2022/08/26
Nonlinear Random Vibration  Cable System  Probabilistic Solution  Filtered Gaussian White Noise