UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Psychological responses to the COVID-19 pandemic and situational impact: A network analysis in Hong Kong residents Journal article
Fong, Ted C.T., Chang, Kay, Ho, Rainbow T.H., Chio, Floria H.N., Yip, Paul S.F., Wen, Ming. Psychological responses to the COVID-19 pandemic and situational impact: A network analysis in Hong Kong residents[J]. Journal of Affective Disorders, 2024, 362, 152-160.
Authors:  Fong, Ted C.T.;  Chang, Kay;  Ho, Rainbow T.H.;  Chio, Floria H.N.;  Yip, Paul S.F.; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.9/5.4 | Submit date:2024/08/05
Bridge Linkages  Central Symptoms  Covid-19 Pandemic  Network Approach  Resilience  Well-being  
Sova: A software-defined autonomic framework for virtual network allocations Journal article
Ye,Zhiyong, Wang,Yang, He,Shuibing, Xu,Chengzhong, Sun,Xian He. Sova: A software-defined autonomic framework for virtual network allocations[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 32(1), 116-130.
Authors:  Ye,Zhiyong;  Wang,Yang;  He,Shuibing;  Xu,Chengzhong;  Sun,Xian He
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:5.6/4.5 | Submit date:2021/03/09
Autonomic Computing  Dynamic Sr-iov  Mape-k Loop  Network Allocation  Software-defined Approach  Virtual Machine Migration  
Synthesis design of a wideband impedance transformer consisting of two-section coupled lines Journal article
Wu, Qiongsen, Zhu, Lei. Synthesis design of a wideband impedance transformer consisting of two-section coupled lines[J]. IET MICROWAVES ANTENNAS & PROPAGATION, 2017, 11(1), 144-150.
Authors:  Wu, Qiongsen;  Zhu, Lei
Favorite | TC[WOS]:9 TC[Scopus]:11  IF:1.1/1.4 | Submit date:2018/10/30
Impedance Convertors  Network Synthesis  Frequency Response  Wideband Impedance Transformer  Two-section Coupled Lines  Synthesis Design  Reflection Zeros  Chebyshev-function Frequency Response  Direct Synthesis Approach  Impedance-transformation Ratio  Passband Return Loss  Equal-ripple Rl  Operating Bandwidth  
Is a complex neural network based air quality prediction model better than a simple one? A Bayesian point of view Conference paper
K. I. Hoi, K. V. Yuen, K. M. Mok. Is a complex neural network based air quality prediction model better than a simple one? A Bayesian point of view[C]:AMER INST PHYSICS, 2 HUNTINGTON QUADRANGLE, STE 1NO1, MELVILLE, NY 11747-4501 USA, 2010, 764-769.
Authors:  K. I. Hoi;  K. V. Yuen;  K. M. Mok
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/02/12
Air Quality Prediction  Artificial Neural Network  Bayesian Approach  Macau  Pm10