UM

Browse/Search Results:  1-7 of 7 Help

Selected(0)Clear Items/Page:    Sort:
A Deep Learning Approach Based on Novel Multi-Feature Fusion for Power Load Prediction Journal article
Xiao, Ling, An, Ruofan, Zhang, Xue. A Deep Learning Approach Based on Novel Multi-Feature Fusion for Power Load Prediction[J]. Processes, 2024, 12(4), 793.
Authors:  Xiao, Ling;  An, Ruofan;  Zhang, Xue
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.8/3.0 | Submit date:2024/05/16
Deep Learning Model  Multiple Features  Power Load Forecasting  Transfer Learning  
Multi-scale Multi-instance Multi-feature Joint Learning Broad Network (M3JLBN) for gastric intestinal metaplasia subtype classification Journal article
Lai, Qi, Vong, Chi Man, Wong, Pak Kin, Wang, Shi Tong, Yan, Tao, Choi, I. Cheong, Yu, Hon Ho. Multi-scale Multi-instance Multi-feature Joint Learning Broad Network (M3JLBN) for gastric intestinal metaplasia subtype classification[J]. Knowledge-Based Systems, 2022, 249, 108960.
Authors:  Lai, Qi;  Vong, Chi Man;  Wong, Pak Kin;  Wang, Shi Tong;  Yan, Tao; et al.
Favorite | TC[WOS]:7 TC[Scopus]:9  IF:7.2/7.4 | Submit date:2022/08/02
Gastric Intestinal Metaplasia  Gastrointestinal Endoscope Images  Joint Learning Broad Network  Multi-instance Learning  Multiple Features  
Multi-feature representation for fatty liver disease detection with breath sample analysis Conference paper
Zhang, Qi, Zhou, Jianhang, Zhang, Bob. Multi-feature representation for fatty liver disease detection with breath sample analysis[C], 2022, 3908-3910.
Authors:  Zhang, Qi;  Zhou, Jianhang;  Zhang, Bob
Favorite | TC[Scopus]:1 | Submit date:2023/03/06
Breath Sample  Disease Detection  E-nose  Fatty Liver Disease  Multiple Features  
Multi-feature representation for burn depth classification via burn images Journal article
Zhang, Bob, Zhou, Jianhang. Multi-feature representation for burn depth classification via burn images[J]. Artificial Intelligence in Medicine, 2021, 118.
Authors:  Zhang, Bob;  Zhou, Jianhang
Favorite | TC[WOS]:5 TC[Scopus]:4  IF:6.1/7.1 | Submit date:2021/12/08
Burn  Burn Depth  Classification  Image Processing  Multiple Features  
Joint Registration of Multiple Point Sets by Preserving Global and Local Structure Conference paper
Hao Zhu, Bin Guo, Ka-Veng Yuen, Henry Leung, Yongfu Li, Zhen Tian. Joint Registration of Multiple Point Sets by Preserving Global and Local Structure[C]:IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2018, 1459-1463.
Authors:  Hao Zhu;  Bin Guo;  Ka-Veng Yuen;  Henry Leung;  Yongfu Li; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/02/12
Multiple Point Sets Registration  Local Features  Gaussian Mixture Model  Expectation Maximization  
Spatial adjacent bag of features with multiple superpixels for object segmentation and classification Journal article
Tao W., Zhou Yicong, Liu L., Li K., Sun K., Zhang Z.. Spatial adjacent bag of features with multiple superpixels for object segmentation and classification[J]. Information Sciences, 2014, 281, 373-385.
Authors:  Tao W.;  Zhou Yicong;  Liu L.;  Li K.;  Sun K.; et al.
Favorite | TC[WOS]:8 TC[Scopus]:14 | Submit date:2018/12/21
Multiple Segmentations  Object Recognition  Spatial Adjacent Bag Of Features  Superpixel Adjacent Histogram  
Accurate and efficient cross-domain visual matching leveraging multiple feature representations Journal article
Gang Sun, Shuhui Wang, Xuehui Liu, Qingming Huang, Yanyun Chen, Enhua Wu. Accurate and efficient cross-domain visual matching leveraging multiple feature representations[J]. The Visual Computer, 2013, 29(6-8), 565-575.
Authors:  Gang Sun;  Shuhui Wang;  Xuehui Liu;  Qingming Huang;  Yanyun Chen; et al.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:3.0/3.0 | Submit date:2018/11/06
Visual Matching  Cross-domain  Multiple Features  Hyperplane Hashing