×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
THE STATE KEY LA... [3]
Faculty of Scien... [3]
Faculty of Socia... [1]
Authors
YUEN KA VENG [1]
WAN FENG [1]
CHEUNG SHU FAI [1]
LAO KENG WENG [1]
KUOK SIN CHI [1]
WANG PENGYANG [1]
More...
Document Type
Journal article [3]
Conference paper [2]
Date Issued
2024 [2]
2023 [2]
2010 [1]
Language
英語English [5]
Source Publication
2010 IEEE Intern... [1]
Behavior Researc... [1]
IEEE Transaction... [1]
Knowledge-Based ... [1]
Indexed By
SCIE [2]
CPCI-S [1]
EI [1]
SSCI [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-5 of 5
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification
Journal article
Kuok, Sin Chi, Yuen, Ka Veng, Dodwell, Tim, Girolami, Mark. Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification[J]. Knowledge-Based Systems, 2024, 301, 112272.
Authors:
Kuok, Sin Chi
;
Yuen, Ka Veng
;
Dodwell, Tim
;
Girolami, Mark
Favorite
|
TC[WOS]:
0
TC[Scopus]:
1
IF:
7.2
/
7.4
|
Submit date:2024/08/05
Bayesian Inference
Broad Bayesian Learning
Imputation
Missing Data
Uncertainty Quantification
Monte Carlo confidence intervals for the indirect effect with missing data
Journal article
Pesigan, Ivan Jacob Agaloos, Cheung, Shu Fai. Monte Carlo confidence intervals for the indirect effect with missing data[J]. Behavior Research Methods, 2024, 56(3), 1678-1696.
Authors:
Pesigan, Ivan Jacob Agaloos
;
Cheung, Shu Fai
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
IF:
4.6
/
7.2
|
Submit date:2024/02/23
Monte Carlo Method
Nonparametric Bootstrap
Indirect Effect
Mediation
Missing Completely At Random
Missing At Random
Full-information Maximum Likelihood
Multiple Imputation
Deep Generative Imputation Model for Missing Not At Random Data
Conference paper
Jialei Chen, Yuanbo Xu, Pengyang Wang, Yongjian Yang. Deep Generative Imputation Model for Missing Not At Random Data[C]:ASSOC COMPUTING MACHINERY1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES, 2023, 316 - 325.
Authors:
Jialei Chen
;
Yuanbo Xu
;
Pengyang Wang
;
Yongjian Yang
Favorite
|
TC[WOS]:
2
TC[Scopus]:
3
|
Submit date:2023/12/13
Deep Generative Models
Imputation
Missing Data
Missing Not At Random
Variational Autoencoder
Wasserstein Adversarial Learning for Identification of Power Quality Disturbances with Incomplete Data
Journal article
Feng,Guangxu, Lao,Keng Weng. Wasserstein Adversarial Learning for Identification of Power Quality Disturbances with Incomplete Data[J]. IEEE Transactions on Industrial Informatics, 2023, 19(10), 10401 - 10411.
Authors:
Feng,Guangxu
;
Lao,Keng Weng
Favorite
|
TC[WOS]:
4
TC[Scopus]:
6
IF:
11.7
/
11.4
|
Submit date:2023/08/03
Data Imputation
Generative Adversarial Network (Gan)
Power Quality Disturbances (Pqds)
Unsupervised Domain Adaptation
Wasserstein Loss
Pre-processing for missing data: A hybrid approach to air pollution prediction in Macau
Conference paper
Lei K.S., Wan F.. Pre-processing for missing data: A hybrid approach to air pollution prediction in Macau[C], 2010, 418-422.
Authors:
Lei K.S.
;
Wan F.
Favorite
|
TC[Scopus]:
14
|
Submit date:2018/12/24
Anfis
Api
Multiple Imputation