UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification Journal article
Kuok, Sin Chi, Yuen, Ka Veng, Dodwell, Tim, Girolami, Mark. Generative broad Bayesian (GBB) imputer for missing data imputation with uncertainty quantification[J]. Knowledge-Based Systems, 2024, 301, 112272.
Authors:  Kuok, Sin Chi;  Yuen, Ka Veng;  Dodwell, Tim;  Girolami, Mark
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:7.2/7.4 | Submit date:2024/08/05
Bayesian Inference  Broad Bayesian Learning  Imputation  Missing Data  Uncertainty Quantification  
Monte Carlo confidence intervals for the indirect effect with missing data Journal article
Pesigan, Ivan Jacob Agaloos, Cheung, Shu Fai. Monte Carlo confidence intervals for the indirect effect with missing data[J]. Behavior Research Methods, 2024, 56(3), 1678-1696.
Authors:  Pesigan, Ivan Jacob Agaloos;  Cheung, Shu Fai
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:4.6/7.2 | Submit date:2024/02/23
Monte Carlo Method  Nonparametric Bootstrap  Indirect Effect  Mediation  Missing Completely At Random  Missing At Random  Full-information Maximum Likelihood  Multiple Imputation  
Deep Generative Imputation Model for Missing Not At Random Data Conference paper
Jialei Chen, Yuanbo Xu, Pengyang Wang, Yongjian Yang. Deep Generative Imputation Model for Missing Not At Random Data[C]:ASSOC COMPUTING MACHINERY1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES, 2023, 316 - 325.
Authors:  Jialei Chen;  Yuanbo Xu;  Pengyang Wang;  Yongjian Yang
Favorite | TC[WOS]:2 TC[Scopus]:3 | Submit date:2023/12/13
Deep Generative Models  Imputation  Missing Data  Missing Not At Random  Variational Autoencoder  
Wasserstein Adversarial Learning for Identification of Power Quality Disturbances with Incomplete Data Journal article
Feng,Guangxu, Lao,Keng Weng. Wasserstein Adversarial Learning for Identification of Power Quality Disturbances with Incomplete Data[J]. IEEE Transactions on Industrial Informatics, 2023, 19(10), 10401 - 10411.
Authors:  Feng,Guangxu;  Lao,Keng Weng
Favorite | TC[WOS]:4 TC[Scopus]:6  IF:11.7/11.4 | Submit date:2023/08/03
Data Imputation  Generative Adversarial Network (Gan)  Power Quality Disturbances (Pqds)  Unsupervised Domain Adaptation  Wasserstein Loss  
Pre-processing for missing data: A hybrid approach to air pollution prediction in Macau Conference paper
Lei K.S., Wan F.. Pre-processing for missing data: A hybrid approach to air pollution prediction in Macau[C], 2010, 418-422.
Authors:  Lei K.S.;  Wan F.
Favorite | TC[Scopus]:14 | Submit date:2018/12/24
Anfis  Api  Multiple Imputation