UM

Browse/Search Results:  1-10 of 13 Help

Selected(0)Clear Items/Page:    Sort:
From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited Journal article
Wang, Zheng, Ding, Hongming, Pan, Li, Li, Jianhua, Gong, Zhiguo, Yu, Philip S.. From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Authors:  Wang, Zheng;  Ding, Hongming;  Pan, Li;  Li, Jianhua;  Gong, Zhiguo; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/11/05
Data Mining  Graph Convolutional Neural Networks  Graph-based Semi-supervised Learning (Gssl)  
CGraphNet: Contrastive Graph Context Prediction for Sparse Unlabeled Short Text Representation Learning on Social Media Journal article
Chen, Junyang, Guo, Jingcai, Li, Xueliang, Wang, Huan, Xu, Zhenghua, Gong, Zhiguo, Zhang, Liangjie, Leung, Victor C.M.. CGraphNet: Contrastive Graph Context Prediction for Sparse Unlabeled Short Text Representation Learning on Social Media[J]. IEEE Transactions on Computational Social Systems, 2024.
Authors:  Chen, Junyang;  Guo, Jingcai;  Li, Xueliang;  Wang, Huan;  Xu, Zhenghua; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.6 | Submit date:2024/11/05
Contrastive Graph Context Prediction  Sequential Learning  Social Media Short Text Representation Learning  Sparsity Problem  Text Mining  
Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks Conference paper
Duan, Wenying, Fang, Tianxiang, Rao, Hong, He, Xiaoxi. Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks[C], New York, NY, USA:Association for Computing Machinery, 2024, 701-712.
Authors:  Duan, Wenying;  Fang, Tianxiang;  Rao, Hong;  He, Xiaoxi
Favorite | TC[Scopus]:0 | Submit date:2024/09/11
Lottery Ticket Hypothesis  Spatial-temporal Data Mining  Spatial-temporal Graph Neural Network  
DyGKT: Dynamic Graph Learning for Knowledge Tracing Conference paper
KE CHENG, LINZHI PENG, PENGYANG WANG, JUNCHEN YE, LEILEI SUN, BOWEN DU. DyGKT: Dynamic Graph Learning for Knowledge Tracing[C], New York, NY, USA:Association for Computing Machinery, 2024, 409-420.
Authors:  KE CHENG;  LINZHI PENG;  PENGYANG WANG;  JUNCHEN YE;  LEILEI SUN; et al.
Favorite | TC[Scopus]:1 | Submit date:2024/08/28
Dynamic Graph  Educational Data Mining  Graph Neural Networks  Knowledge Tracing  
Sparse Enhanced Network: An Adversarial Generation Method for Robust Augmentation in Sequential Recommendation Conference paper
Chen, Junyang, Zou, Guoxuan, Zhou, Pan, Yirui, Wu, Chen, Zhenghan, Su, Houcheng, Wang, Huan, Gong, Zhiguo. Sparse Enhanced Network: An Adversarial Generation Method for Robust Augmentation in Sequential Recommendation[C], 2024, 8283-8291.
Authors:  Chen, Junyang;  Zou, Guoxuan;  Zhou, Pan;  Yirui, Wu;  Chen, Zhenghan; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2024/05/16
Dmkm: Graph Mining, Social Network Analysis & Community  Dmkm: Anomaly/outlier Detection  Dmkm: Recommender Systems  Ml: Deep Learning Algorithms  Ml: Deep Learning Theory  Ml: Graph-based Machine Learning  Ml: Semi-supervised Learning  Ml: Transparent, Interpretable, Explainable Ml  Ml: Unsupervised & Self-supervised Learning  
Extracting Top-κ Frequent and Diversified Patterns in Knowledge Graphs Journal article
Zeng,Jian, U,Leong Hou, Yan,Xiao, Li,Yan, Han,Mingji, Tang,Bo. Extracting Top-κ Frequent and Diversified Patterns in Knowledge Graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(2), 608-626.
Authors:  Zeng,Jian;  U,Leong Hou;  Yan,Xiao;  Li,Yan;  Han,Mingji; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2023/08/03
Knowledge Discovery  Graph Pattern Mining  Data Exploration  
Entity relationship extraction and correlation analysis of agricultural product standard domain knowledge graph 农产品标准领域知识图谱实体关系抽取及关联性分析 Journal article
Dongdong Lyu, Junhua Chen, Dianhui Mao, Qingchuan Zhang, Min Zhao, Zhihao Hao. Entity relationship extraction and correlation analysis of agricultural product standard domain knowledge graph 农产品标准领域知识图谱实体关系抽取及关联性分析[J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9), 315-323.
Authors:  Dongdong Lyu;  Junhua Chen;  Dianhui Mao;  Qingchuan Zhang;  Min Zhao; et al.
Favorite | TC[Scopus]:5 | Submit date:2023/01/30
Agricultural Product Standard  Community Mining  Dependency Parsing  Knowledge Graph  Relation Extraction  
A Graph Mining Approach for Ranking and Discovering the Interesting Frequent Subgraph Patterns Journal article
Ur Rehman, Saif, Liu, Kexing, Ali, Tariq, Nawaz, Asif, Fong, Simon James. A Graph Mining Approach for Ranking and Discovering the Interesting Frequent Subgraph Patterns[J]. International Journal of Computational Intelligence Systems, 2021, 14(1).
Authors:  Ur Rehman, Saif;  Liu, Kexing;  Ali, Tariq;  Nawaz, Asif;  Fong, Simon James
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:2.5/2.2 | Submit date:2021/12/08
Graph Data  Social Network  Graph Mining  Transactional Graphs  Frequent Subgraph Patterns  Ranking  
Expanding Semantic Knowledge for Zero-Shot Graph Embedding Conference paper
Wang, Zheng, Shao, Ruihang, Wang, Changping, Hu, Changjun, Wang, Chaokun, Gong, Zhiguo. Expanding Semantic Knowledge for Zero-Shot Graph Embedding[C], 2021, 394-402.
Authors:  Wang, Zheng;  Shao, Ruihang;  Wang, Changping;  Hu, Changjun;  Wang, Chaokun; et al.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2022/05/13
Data Mining  Graph Embedding  Zero-shot Learning  
Optimized and frequent subgraphs: How are they related? Journal article
SAIF UR REHMAN, SOHAIL ASGHAR, SIMON JAMES FONG. Optimized and frequent subgraphs: How are they related?[J]. IEEE Access, 2018, 6, 37237-37249.
Authors:  SAIF UR REHMAN;  SOHAIL ASGHAR;  SIMON JAMES FONG
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:3.4/3.7 | Submit date:2019/02/13
Data Mining  Graph Pattern Mining  Social Network Analysis  Frequent Subgraph Patterns  Optimized Graph Patterns