UM

Browse/Search Results:  1-10 of 11 Help

Selected(0)Clear Items/Page:    Sort:
Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations Journal article
Ou, Caixia, Cen, Dakang, Vong, Seakweng. Variable-step L1 method combined with time two-grid algorithm for multi-singularity problems arising from two-dimensional nonlinear delay fractional equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2024, 139, 108270.
Authors:  Ou, Caixia;  Cen, Dakang;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.4/3.3 | Submit date:2024/09/03
Finite Difference Method  Multi-singularity Problem  Nonlinear Delay Fractional Equations  Stability And Convergence  Time Two-grid Technique  
TIME TWO-GRID TECHNIQUE COMBINED WITH TEMPORAL SECOND ORDER DIFFERENCE METHOD FOR SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATIONS Journal article
Cen, Dakang, Ou, Caixia, Wang, Zhibo, Vong, Seakweng. TIME TWO-GRID TECHNIQUE COMBINED WITH TEMPORAL SECOND ORDER DIFFERENCE METHOD FOR SEMILINEAR FRACTIONAL DIFFUSION-WAVE EQUATIONS[J]. Discrete and Continuous Dynamical Systems - Series B, 2024, 29(7), 3137-3162.
Authors:  Cen, Dakang;  Ou, Caixia;  Wang, Zhibo;  Vong, Seakweng
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.3/1.2 | Submit date:2024/05/16
Convergence  Finite Difference Method  Semilinear Fractional Diffusion-wave Equations  Stability  Temporal Second Order Scheme  Time Two-grid Technique  
Efficient finite difference scheme for a hidden-memory variable-order time-fractional diffusion equation Journal article
Sun, Lu Yao, Lei, Siu Long, Sun, Hai Wei. Efficient finite difference scheme for a hidden-memory variable-order time-fractional diffusion equation[J]. Computational and Applied Mathematics, 2023, 42, 362.
Authors:  Sun, Lu Yao;  Lei, Siu Long;  Sun, Hai Wei
Favorite | TC[Scopus]:2 | Submit date:2024/01/02
Convergence Analysis  Fast Finite Difference Method  Hidden-memory  Time-fractional Equation  Variable-order  
Convergence and robustness of bounded recurrent neural networks for solving dynamic Lyapunov equations Journal article
Guancheng Wang, Zhihao Hao, Bob Zhang, Long Jin. Convergence and robustness of bounded recurrent neural networks for solving dynamic Lyapunov equations[J]. INFORMATION SCIENCES, 2022, 588, 106-123.
Authors:  Guancheng Wang;  Zhihao Hao;  Bob Zhang;  Long Jin
Favorite | TC[WOS]:29 TC[Scopus]:27  IF:0/0 | Submit date:2022/05/04
Bounded Activation Functions  Dynamic Lyapunov Equations  Finite-time Convergence  Recurrent Neural Network  Robustness  
Fuzzy Adaptive Finite-Time Consensus Control for High-Order Nonlinear Multi-Agent Systems Based on Event-Triggered Journal article
Zhou, Haodong, Sui, Shuai, Tong, Shaocheng. Fuzzy Adaptive Finite-Time Consensus Control for High-Order Nonlinear Multi-Agent Systems Based on Event-Triggered[J]. IEEE Transactions on Fuzzy Systems, 2022.
Authors:  Zhou, Haodong;  Sui, Shuai;  Tong, Shaocheng
Favorite | TC[WOS]:36 TC[Scopus]:39  IF:10.7/9.7 | Submit date:2022/05/17
Artificial Neural Networks  Backstepping  Consensus Control  Consensus Control  Control Design  Convergence  Eventtriggered  Finite-time  Fuzzy Logic  High-order Nonlinear Multi-agent Systems  Nonlinear Dynamical Systems  
Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence Journal article
Li, Meilin, Li, Tieshan, Gao, Xiaoyang, Shan, Qihe, Chen, C. L.Philip, Xiao, Yang. Adaptive NN event-triggered control for path following of underactuated vessels with finite-time convergence[J]. Neurocomputing, 2020, 379, 203-213.
Authors:  Li, Meilin;  Li, Tieshan;  Gao, Xiaoyang;  Shan, Qihe;  Chen, C. L.Philip; et al.
Favorite | TC[WOS]:72 TC[Scopus]:83  IF:5.5/5.5 | Submit date:2021/12/03
Event-triggered Control  Finite-time Convergence  Line-of-sight  Path Following  Radial Basis Function Neural Network  Underactuated Marine Surface Vessel  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions Journal article
Pin, Lyu, Seakweng, Vong. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony‐type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019.
Authors:  Pin, Lyu;  Seakweng, Vong
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2022/07/01
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article
Lyu,Pin, Vong,Seakweng. A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions[J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 36(3), 579-600.
Authors:  Lyu,Pin;  Vong,Seakweng
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:2.1/2.8 | Submit date:2021/03/09
Caputo Derivative  Finite Difference Scheme  Fractional Bbm-type Equation  Nonuniform Time Grid  Unconditional Convergence  
Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients Journal article
Lin,Xue lei, Ng,Michael K., Sun,Hai Wei. Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients[J]. Journal of Scientific Computing, 2018, 75(2), 1102-1127.
Authors:  Lin,Xue lei;  Ng,Michael K.;  Sun,Hai Wei
Favorite | TC[WOS]:24 TC[Scopus]:24  IF:2.8/2.7 | Submit date:2019/05/27
Convergence  High-order Finite Difference Schemes  Stability  Time-dependent Space-fractional Diffusion Equation  Variable Diffusion Coefficients  
Fourth order finite difference schemes for time-space fractional sub-diffusion equations Journal article
Pang,Hong Kui, Sun,Hai Wei. Fourth order finite difference schemes for time-space fractional sub-diffusion equations[J]. Computers and Mathematics with Applications, 2016, 71(6), 1287-1302.
Authors:  Pang,Hong Kui;  Sun,Hai Wei
Favorite | TC[WOS]:31 TC[Scopus]:32 | Submit date:2019/05/27
Convergence  Fourth Order Finite-difference Approximation  Fractional Derivative  L1 Approximation  Stability  Time-space Fractional Sub-diffusion Equations