UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Intelligent fault monitoring and diagnosis of tunnel fans using a hierarchical cascade forest Journal article
Yang, Zhi Xin, Li, Chao Shun, Wang, Xian Bo, Chen, Hao. Intelligent fault monitoring and diagnosis of tunnel fans using a hierarchical cascade forest[J]. ISA Transactions, 2022, 136, 442-454.
Authors:  Yang, Zhi Xin;  Li, Chao Shun;  Wang, Xian Bo;  Chen, Hao
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:6.3/5.9 | Submit date:2023/01/30
Confidence Estimation  Deep Forest  Hierarchical Cascade Structure  Intelligent Fault Diagnosis  Random Forest  Tunnel Fans  
A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems Journal article
Jia, Z., Liu, Z.B., Gan, Y.F., Vong, C. M.. A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems[J]. IEEE Transactions on Industrial Electronics (SCI-E), 2021, 10087-10096.
Authors:  Jia, Z.;  Liu, Z.B.;  Gan, Y.F.;  Vong, C. M.
Favorite |   IF:7.5/8.0 | Submit date:2022/08/09
Analog circuits  deep forest (DF)  diagnosis  failure  fault  
A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems Journal article
Jia, Zhen, Liu, Zhenbao, Gan, Yanfen, Vong, Chi Man, Pecht, Michael. A Deep Forest-Based Fault Diagnosis Scheme for Electronics-Rich Analog Circuit Systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68(10), 10087-10096.
Authors:  Jia, Zhen;  Liu, Zhenbao;  Gan, Yanfen;  Vong, Chi Man;  Pecht, Michael
Favorite | TC[WOS]:37 TC[Scopus]:39  IF:7.5/8.0 | Submit date:2021/12/08
Analog Circuits  Deep Forest (Df)  Diagnosis  Failure  Fault  
A Network Intrusion Detection Approach Based on Asymmetric Convolutional Autoencoder Conference paper
Shujian Ji, Kejiang Ye, Cheng-Zhong Xu. A Network Intrusion Detection Approach Based on Asymmetric Convolutional Autoencoder[C], 2020, 126 - 140.
Authors:  Shujian Ji;  Kejiang Ye;  Cheng-Zhong Xu
Favorite | TC[Scopus]:7 | Submit date:2022/01/26
Deep Learning  Anomaly Detection  Asymmetric Convolutional Autoencoder  Random Forest  
Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques Journal article
Zhao,Qianqian, Ye,Zhuyifan, Su,Yan, Ouyang,Defang. Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques[J]. Acta Pharmaceutica Sinica B, 2019, 9(6), 1241-1252.
Authors:  Zhao,Qianqian;  Ye,Zhuyifan;  Su,Yan;  Ouyang,Defang
Favorite | TC[WOS]:65 TC[Scopus]:73  IF:14.7/14.1 | Submit date:2021/03/02
Binding Free Energy  Cyclodextrin  Deep Learning  Ketoprofen  Lightgbm  Machine Learning  Molecular Modeling  Random Forest