UM

Browse/Search Results:  1-10 of 157 Help

Selected(0)Clear Items/Page:    Sort:
Neighbor Distribution Learning for Minority Class Augmentation Journal article
Zhou, Mengting, Gong, Zhiguo. Neighbor Distribution Learning for Minority Class Augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12), 8901-8913.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2024/09/03
Training  Topology  Graph Neural Networks  Data Models  Accuracy  Task Analysis  Image Color Analysis  Class-imbalanced Learning  Data Mining  Node Classification  
Subspace time series clustering of meteocean data to support ocean and coastal hydrodynamic modeling Journal article
Tan, Weikai, Stocchino, Alessandro, Cai, Zhongya. Subspace time series clustering of meteocean data to support ocean and coastal hydrodynamic modeling[J]. Ocean Engineering, 2024, 313(1), 119417.
Authors:  Tan, Weikai;  Stocchino, Alessandro;  Cai, Zhongya
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.6/4.8 | Submit date:2024/11/05
Data Mining  Meteocean Scenarios  Coastal Numerical Modeling  Reanalysis Database  
From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited Journal article
Wang, Zheng, Ding, Hongming, Pan, Li, Li, Jianhua, Gong, Zhiguo, Yu, Philip S.. From Cluster Assumption to Graph Convolution: Graph-Based Semi-Supervised Learning Revisited[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.
Authors:  Wang, Zheng;  Ding, Hongming;  Pan, Li;  Li, Jianhua;  Gong, Zhiguo; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/11/05
Data Mining  Graph Convolutional Neural Networks  Graph-based Semi-supervised Learning (Gssl)  
Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks Conference paper
Duan, Wenying, Fang, Tianxiang, Rao, Hong, He, Xiaoxi. Pre-Training Identification of Graph Winning Tickets in Adaptive Spatial-Temporal Graph Neural Networks[C], New York, NY, USA:Association for Computing Machinery, 2024, 701-712.
Authors:  Duan, Wenying;  Fang, Tianxiang;  Rao, Hong;  He, Xiaoxi
Favorite | TC[Scopus]:0 | Submit date:2024/09/11
Lottery Ticket Hypothesis  Spatial-temporal Data Mining  Spatial-temporal Graph Neural Network  
Hierarchical Reinforcement Learning on Multi-Channel Hypergraph Neural Network for Course Recommendation Conference paper
LU JIANG, YANAN XIAO, XINXIN ZHAO, YUANBO XU, SHULI HU, PENGYANG WANG, MINGHAO YIN. Hierarchical Reinforcement Learning on Multi-Channel Hypergraph Neural Network for Course Recommendation[C]:International Joint Conferences on Artificial Intelligence, 2024, 2099-2107.
Authors:  LU JIANG;  YANAN XIAO;  XINXIN ZHAO;  YUANBO XU;  SHULI HU; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
DyGKT: Dynamic Graph Learning for Knowledge Tracing Conference paper
KE CHENG, LINZHI PENG, PENGYANG WANG, JUNCHEN YE, LEILEI SUN, BOWEN DU. DyGKT: Dynamic Graph Learning for Knowledge Tracing[C], New York, NY, USA:Association for Computing Machinery, 2024, 409-420.
Authors:  KE CHENG;  LINZHI PENG;  PENGYANG WANG;  JUNCHEN YE;  LEILEI SUN; et al.
Favorite | TC[Scopus]:1 | Submit date:2024/08/28
Dynamic Graph  Educational Data Mining  Graph Neural Networks  Knowledge Tracing  
Reconstructing Missing Variables for Multivariate Time Series Forecasting via Conditional Generative Flows Conference paper
XUANMING HU, WEI FAN, HAIFENG CHEN, PENGYANG WANG, YANJIE FU. Reconstructing Missing Variables for Multivariate Time Series Forecasting via Conditional Generative Flows[C]:International Joint Conferences on Artificial Intelligence, 2024, 2063-2071.
Authors:  XUANMING HU;  WEI FAN;  HAIFENG CHEN;  PENGYANG WANG;  YANJIE FU
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
Decoupled Invariant Attention Network for Multivariate Time-series Forecasting Conference paper
HAIHUA XU, WEI FAN, KUN YI, PENGYANG WANG. Decoupled Invariant Attention Network for Multivariate Time-series Forecasting[C]:International Joint Conferences on Artificial Intelligence, 2024, 2487-2495.
Authors:  HAIHUA XU;  WEI FAN;  KUN YI;  PENGYANG WANG
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
Hierarchical Reinforcement Learning for Point of Interest Recommendation Conference paper
YANAN XIAO, LU JIANG, KUNPENG LIU, YUANBO XU, PENGYANG WANG, MINGHAO YIN. Hierarchical Reinforcement Learning for Point of Interest Recommendation[C]:International Joint Conferences on Artificial Intelligence, 2024, 2460-2468.
Authors:  YANAN XIAO;  LU JIANG;  KUNPENG LIU;  YUANBO XU;  PENGYANG WANG; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/08/28
Data Mining  
The impact of visual, auditory, textual stimuli on crowdfunding: evidence from tourism projects Journal article
Chen, Yihong, Hu, Tao, Law, Rob. The impact of visual, auditory, textual stimuli on crowdfunding: evidence from tourism projects[J]. Current Issues in Tourism, 2024.
Authors:  Chen, Yihong;  Hu, Tao;  Law, Rob
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.7/6.7 | Submit date:2024/08/05
Computerised Video Content Analysis  Crowdfunding Entrepreneurs  Data Mining  Deep Learning  Forecasting Model