UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales Journal article
Zhao,Baoxin, Xu,Cheng Zhong, Liu,Siyuan, Zhao,Juanjuan, Li,Li. Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales[J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33(6), e5790.
Authors:  Zhao,Baoxin;  Xu,Cheng Zhong;  Liu,Siyuan;  Zhao,Juanjuan;  Li,Li
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:1.5/1.5 | Submit date:2021/03/09
Bottlenecks Identification  Influence Maximization  Traffic Congestion Diffusion  Traffic Flow Influence  
COMO: Efficient Deep Neural Networks Expansion With COnvolutional MaxOut Journal article
Zhao,Baoxin, Xiong,Haoyi, Bian,Jiang, Guo,Zhishan, Xu,Cheng Zhong, Dou,Dejing. COMO: Efficient Deep Neural Networks Expansion With COnvolutional MaxOut[J]. IEEE Transactions on Multimedia, 2020, 23, 1722-1730.
Authors:  Zhao,Baoxin;  Xiong,Haoyi;  Bian,Jiang;  Guo,Zhishan;  Xu,Cheng Zhong; et al.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:8.4/8.0 | Submit date:2021/03/09
Computer Architecture  Convolution  Convolutional Neural Networks  Deep Learning  Spatial Resolution  Transforms  
Spatiotemporal data fusion in graph convolutional networks for traffic prediction Journal article
Zhao, Baoxin, Gao, Xitong, Liu, Jianqi, Zhao, Juanjuan, Xu, Chengzhong. Spatiotemporal data fusion in graph convolutional networks for traffic prediction[J]. IEEE Access, 2020, 8, 76632-76641.
Authors:  Zhao, Baoxin;  Gao, Xitong;  Liu, Jianqi;  Zhao, Juanjuan;  Xu, Chengzhong
Favorite | TC[WOS]:19 TC[Scopus]:20  IF:3.4/3.7 | Submit date:2021/03/09
Data Fusion  Graph Convolutional Networks  Multi-source Data  Traffic Prediction  
A Congestion Diffusion Model with Influence Maximization for Traffic Bottlenecks Identification in Metrocity Scales Conference paper
Baoxin Zhao, Chengzhong Xu, Siyuan Liu, Juanjuan Zhao, Li Li. A Congestion Diffusion Model with Influence Maximization for Traffic Bottlenecks Identification in Metrocity Scales[C], NEW YORK:IEEE, 2019, 1717-1722.
Authors:  Baoxin Zhao;  Chengzhong Xu;  Siyuan Liu;  Juanjuan Zhao;  Li Li
Favorite | TC[WOS]:4 TC[Scopus]:4 | Submit date:2021/03/09
Bottlenecks Identification  Influence Maximization  Traffic Congestion Diffusion  Traffic Flow Influence