UM

Browse/Search Results:  1-10 of 18 Help

Selected(0)Clear Items/Page:    Sort:
A cost-effective and field-deployable sensing system for chip-integrated detection of bacteria with the naked eye Journal article
Shen, Ren, Hui, Wenhao, Wu, Wenguang, Yang, Ning, Lin, Xiaodong, Mak, Pui In, Martins, Rui P., Liu, Aiqun, Jia, Yanwei. A cost-effective and field-deployable sensing system for chip-integrated detection of bacteria with the naked eye[J]. Sensors and Actuators B: Chemical, 2024, 410, 135668.
Authors:  Shen, Ren;  Hui, Wenhao;  Wu, Wenguang;  Yang, Ning;  Lin, Xiaodong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.0/7.0 | Submit date:2024/05/16
Bacteria Detection  Microfluidics  Naked-eye  Pcr  Poct  
PFed-DBA: Distribution Bias Aware Personalized Federated Learning for Data Heterogeneity Conference paper
Meihan Wu, Li Li, Tao Chang, Jie Zhou, Cui Miao, Xiaodong Wang, ChengZhong Xu, Rigall, Eric. PFed-DBA: Distribution Bias Aware Personalized Federated Learning for Data Heterogeneity[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 202971.
Authors:  Meihan Wu;  Li Li;  Tao Chang;  Jie Zhou;  Cui Miao; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/08/29
Contrastive Learning  Data Heterogeneity  Ersonalized Federated Learning  Representation Learning  
FedEKT: Ensemble Knowledge Transfer for Model-Heterogeneous Federated Learning Conference paper
Meihan Wu, Li Li, Tao Chang, Peng Qiao, Cui Miao, Jie Zhou, Jingnan Wang, Xiaodong Zhang. FedEKT: Ensemble Knowledge Transfer for Model-Heterogeneous Federated Learning[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 202971.
Authors:  Meihan Wu;  Li Li;  Tao Chang;  Peng Qiao;  Cui Miao; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/08/29
Federated Learning  Knowledge Transfer  Model Heterogeneity  
Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium Journal article
Chen, Sensheng, Chen, Ge, Zhao, Yixuan, Bu, Saiyu, Hu, Zhaoning, Mao, Boyang, Wu, Haotian, Liao, Junhao, Li, Fangfang, Zhou, Chaofan, Guo, Bingbing, Liu, Wenlin, Zhu, Yaqi, Lu, Qi, Hu, Jingyi, Shang, Mingpeng, Shi, Zhuofeng, Yu, Beiming, Zhang, Xiaodong, Zhao, Zhenxin, Jia, Kaicheng, Zhang, Yanfeng, Sun, Pengzhan, Liu, Zhongfan, Lin, Li, Wang, Xiaomin. Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium[J]. Advanced Materials, 2024, 36(15), 2308950.
Authors:  Chen, Sensheng;  Chen, Ge;  Zhao, Yixuan;  Bu, Saiyu;  Hu, Zhaoning; et al.
Favorite | TC[WOS]:2 TC[Scopus]:3  IF:27.4/30.2 | Submit date:2024/05/02
Cvd Graphene Films  Dry Transfer  Graphene Transfer  Graphene Wafers  Ultraclean Surface  
A Systematic Review of the Design of Serious Games for Innovative Learning: Augmented Reality, Virtual Reality, or Mixed Reality? Review article
2024
Authors:  Lee, Lap Kei;  Wei, Xiaodong;  Chui, Kwok Tai;  Cheung, Simon K.S.;  Wang, Fu Lee; et al.
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:2.6/2.6 | Submit date:2024/05/16
Augmented Reality  Blended Learning  E-learning  Hybrid Learning  Immersive Learning  Innovative Learning  Mixed Reality  Serious Games  Smart Education  Virtual Reality  
A Gated Recurrent Generative Transfer Learning Network for Fault Diagnostics Considering Imbalanced Data and Variable Working Conditions Journal article
Li, Zhuorui, Ma, Jun, Wu, Jiande, Wong, Pak Kin, Wang, Xiaodong, Li, Xiang. A Gated Recurrent Generative Transfer Learning Network for Fault Diagnostics Considering Imbalanced Data and Variable Working Conditions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 1-12.
Authors:  Li, Zhuorui;  Ma, Jun;  Wu, Jiande;  Wong, Pak Kin;  Wang, Xiaodong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/05/16
Fault Diagnosis  Gated Recurrent Generative Transfer Learning Network (Grgtln)  “generation-transfer” CoTraining Training Strategy  Imbalances Data  Smooth Conditional Matrix  
FedHybrid: Hierarchical Hybrid Training for High-Performance Federated Learning Conference paper
Tao Chang, Li Li, Meihan Wu, Wei Yu, Xiaodong Wang. FedHybrid: Hierarchical Hybrid Training for High-Performance Federated Learning[C], 2023.
Authors:  Tao Chang;  Li Li;  Meihan Wu;  Wei Yu;  Xiaodong Wang
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2023/12/14
Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors Journal article
Ding, Hongyao, Liu, Jie, Huo, Peixian, Ding, Rongjian, Shen, Xiaodong, Mao, Hongli, Wen, Yuefang, Li, Hui, Wu, Zi Liang. Ultra-stretchable and conductive polyacrylamide/carboxymethyl chitosan composite hydrogels with low modulus and fast self-recoverability as flexible strain sensors[J]. International Journal of Biological Macromolecules, 2023, 253(5), 127146.
Authors:  Ding, Hongyao;  Liu, Jie;  Huo, Peixian;  Ding, Rongjian;  Shen, Xiaodong; et al.
Favorite | TC[WOS]:11 TC[Scopus]:13  IF:7.7/7.7 | Submit date:2024/01/02
Carboxymethyl Chitosan  Flexible Sensors  Stretchable Hydrogel  
A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples Journal article
Lin, Xiaodong, Wu, Haotian, Zeng, Shiyu, Peng, Tao, Zhang, Pan, Wan, Xinhua, Lang, Yihan, Zhang, Biao, Jia, Yanwei, Shen, Ren, Yin, Binfeng. A self-designed device integrated with a Fermat spiral microfluidic chip for ratiometric and automated point-of-care testing of anthrax biomarker in real samples[J]. Biosensors and Bioelectronics, 2023, 230, 115283.
Authors:  Lin, Xiaodong;  Wu, Haotian;  Zeng, Shiyu;  Peng, Tao;  Zhang, Pan; et al.
Favorite | TC[WOS]:25 TC[Scopus]:24  IF:10.7/9.9 | Submit date:2023/07/20
Dpa Detection  Fermat Spiral Microfluidic Chip (Fs-mc)  Point-of-care Testing (Poct)  Ratiometric Fluorescence  Self-designed Device  
GraphCS: Graph-based Client Selection for Heterogeneity in Federated Learning Journal article
Tao Chang, Li Li, Meihan Wu, Xiaodong Wang, ChengZhong Xu, Wei Yu. GraphCS: Graph-based Client Selection for Heterogeneity in Federated Learning[J]. Journal of Parallel and Distributed Computing, 2023, 177, 131-143.
Authors:  Tao Chang;  Li Li;  Meihan Wu;  Xiaodong Wang;  ChengZhong Xu; et al.
Favorite | TC[WOS]:3 TC[Scopus]:7  IF:3.4/3.4 | Submit date:2023/08/28
Federated Learning  Client Selection  Heterogeneity