UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
A novel model for tourism demand forecasting with spatial–temporal feature enhancement and image-driven method Journal article
Dong, Yunxuan, Zhou, Binggui, Yang, Guanghua, Hou, Fen, Hu, Zheng, Ma, Shaodan. A novel model for tourism demand forecasting with spatial–temporal feature enhancement and image-driven method[J]. NEUROCOMPUTING, 2023, 556, 126663.
Authors:  Dong, Yunxuan;  Zhou, Binggui;  Yang, Guanghua;  Hou, Fen;  Hu, Zheng; et al.
Favorite | TC[WOS]:4 TC[Scopus]:5  IF:5.5/5.5 | Submit date:2023/08/30
Deep Learning  Feature Enhancement  Spatial Series To Image Series  Spatial–temporal Learning  Tourism Demand Forecasting  
A graph-attention based spatial-temporal learning framework for tourism demand forecasting Journal article
Zhou, Binggui, Dong, Yunxuan, Yang, Guanghua, Hou, Fen, Hu, Zheng, Xu, Suxiu, Ma, Shaodan. A graph-attention based spatial-temporal learning framework for tourism demand forecasting[J]. Knowledge-Based Systems, 2023, 263, 110275.
Authors:  Zhou, Binggui;  Dong, Yunxuan;  Yang, Guanghua;  Hou, Fen;  Hu, Zheng; et al.
Favorite | TC[WOS]:7 TC[Scopus]:8  IF:7.2/7.4 | Submit date:2023/04/03
Tourism Demand Forecasting  Dynamic Spatial Connections  Spatial-temporal Learning  Graph Neural Network  Attention Mechanism  
Wind Power Prediction Based on Multi-Class Autoregressive Moving Average Model with Logistic Function Journal article
Yunxuan Dong, Shaodan Ma, Hongcai Zhang, Guanghua Yang. Wind Power Prediction Based on Multi-Class Autoregressive Moving Average Model with Logistic Function[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10(5), 1184 - 1193.
Authors:  Yunxuan Dong;  Shaodan Ma;  Hongcai Zhang;  Guanghua Yang
Favorite | TC[WOS]:21 TC[Scopus]:24  IF:5.7/5.4 | Submit date:2023/03/01
Wind Power Prediction  Wind Generation  Time Series Analysis  Logistic Function Based Classification  
A Combination Model Based Deep Long Term Model for Tourism Demand Forecasting Conference paper
Dong, Yunxuan, Xiao, Ling. A Combination Model Based Deep Long Term Model for Tourism Demand Forecasting[C]:Association for Computing Machinery, 2022, 126-131.
Authors:  Dong, Yunxuan;  Xiao, Ling
Favorite | TC[Scopus]:2 | Submit date:2022/05/17
Evolutionary Algorithms  Long Term Recurrent Neural Networks  Macau  Tourism Demand Forecasting  
A Spatial-temporal Model for Tourism Demand Forecasting Conference paper
Dong, Yunxuan, Zhou, Binggui, Yang, Guanghua, Hou, Fen, Ma, Shaodan. A Spatial-temporal Model for Tourism Demand Forecasting[C], 2022, 1810-1814.
Authors:  Dong, Yunxuan;  Zhou, Binggui;  Yang, Guanghua;  Hou, Fen;  Ma, Shaodan
Favorite | TC[Scopus]:0 | Submit date:2022/08/05
Fully Connected Long Short Term Memory  Spatial-temporal Learning  Tourism Demand Forecasting  
Electrical load forecasting: A deep learning approach based on K-nearest neighbors Journal article
Dong, Yunxuan, Ma, Xuejiao, Fu, Tonglin. Electrical load forecasting: A deep learning approach based on K-nearest neighbors[J]. Applied Soft Computing, 2021, 99, 106900.
Authors:  Dong, Yunxuan;  Ma, Xuejiao;  Fu, Tonglin
Favorite | TC[WOS]:75 TC[Scopus]:91  IF:7.2/7.0 | Submit date:2021/12/07
Deep Learning Approach  Electrical Load Interval Forecasting  K-nearest Neighbors  Kernel Density Estimation  
Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target Journal article
Dong, Yunxuan, Wang, Jing, Xiao, Ling, Fu, Tonglin. Short-term wind speed time series forecasting based on a hybrid method with multiple objective optimization for non-convex target[J]. Energy, 2021, 215, 119180.
Authors:  Dong, Yunxuan;  Wang, Jing;  Xiao, Ling;  Fu, Tonglin
Favorite | TC[WOS]:19 TC[Scopus]:23  IF:9.0/8.2 | Submit date:2021/12/07
Convolutional Neural Networks  Hybrid Forecast Approach  Optimization Algorithm  Wind Speed Forecasting  
An estimating combination method for interval forecasting of electrical load time series Journal article
Ma, Xuejiao, Dong, Yunxuan. An estimating combination method for interval forecasting of electrical load time series[J]. Expert Systems with Applications, 2020, 158.
Authors:  Ma, Xuejiao;  Dong, Yunxuan
Favorite | TC[WOS]:19 TC[Scopus]:21  IF:7.5/7.6 | Submit date:2021/12/06
Distribution Estimation  Electrical Load Time Series  Feature Selection  Interval Forecasting  Machine Learning Method