UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Packaged Millimeter Wave On Chip Bandpass Filter Using SHMSIW and Microstrip Hybrid Structure in 0.25 μm GaAs pHEMT Technology Journal article
Zhou, Xin, Zhang, Gang, Tam, Kam Weng, Chen, Shichang, Zhang, Zhuowei, Fu, Xiaodong. Packaged Millimeter Wave On Chip Bandpass Filter Using SHMSIW and Microstrip Hybrid Structure in 0.25 μm GaAs pHEMT Technology[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2024.
Authors:  Zhou, Xin;  Zhang, Gang;  Tam, Kam Weng;  Chen, Shichang;  Zhang, Zhuowei; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.3/2.1 | Submit date:2024/07/04
Bandpass Filter (Bpf)  Gaas Technology  Hybrid Structure  On-chip, Substrate Integrated Waveguide (Siw)  Transmission Zero (Tz)  
Synthesis Design of a High Selective Dual-Wideband Filtering Power Divider Based on Genetic Algorithm Journal article
Li, Wei, Huang, Nengcai, Ma, Tianye, Zhang, Gang, Chen, Shichang, Liu, Yijie, Zhang, Zhuowei, Tang, Wangchun. Synthesis Design of a High Selective Dual-Wideband Filtering Power Divider Based on Genetic Algorithm[J]. IEEE Transactions on Plasma Science, 2023, 51(12), 3709-3713.
Authors:  Li, Wei;  Huang, Nengcai;  Ma, Tianye;  Zhang, Gang;  Chen, Shichang; et al.
Favorite | TC[WOS]:1 TC[Scopus]:0  IF:1.3/1.2 | Submit date:2024/02/22
Dual Wideband  Filtering Power Divider (Fpd)  Genetic Algorithm (Ga)  
Substructural Regularization With Data-Sensitive Granularity for Sequence Transfer Learning Journal article
Sun, Shichang, Liu, Hongbo, Meng, Jiana, Chen, C. L. Philip, Yang, Yu. Substructural Regularization With Data-Sensitive Granularity for Sequence Transfer Learning[J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29(6), 2545-2557.
Authors:  Sun, Shichang;  Liu, Hongbo;  Meng, Jiana;  Chen, C. L. Philip;  Yang, Yu
Favorite | TC[WOS]:10 TC[Scopus]:10  IF:10.2/10.4 | Submit date:2018/10/30
Data-sensitive Granularity  Hidden Markov Model (Hmm)  Relative Entropy (Re)  Sequence Transfer Learning  Substructural Regularization