×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
THE STATE KEY LA... [2]
Authors
CHENGZHONG XU [4]
Document Type
Journal article [3]
Conference paper [1]
Date Issued
2021 [1]
2020 [2]
2019 [1]
Language
英語English [4]
Source Publication
CONCURRENCY AND ... [1]
IEEE Access [1]
IEEE Transaction... [1]
Proceedings - 20... [1]
Indexed By
SCIE [3]
CPCI-S [1]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-4 of 4
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales
Journal article
Zhao,Baoxin, Xu,Cheng Zhong, Liu,Siyuan, Zhao,Juanjuan, Li,Li. Dynamic traffic bottlenecks identification based on congestion diffusion model by influence maximization in metro-city scales[J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33(6), e5790.
Authors:
Zhao,Baoxin
;
Xu,Cheng Zhong
;
Liu,Siyuan
;
Zhao,Juanjuan
;
Li,Li
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
1.5
/
1.5
|
Submit date:2021/03/09
Bottlenecks Identification
Influence Maximization
Traffic Congestion Diffusion
Traffic Flow Influence
COMO: Efficient Deep Neural Networks Expansion With COnvolutional MaxOut
Journal article
Zhao,Baoxin, Xiong,Haoyi, Bian,Jiang, Guo,Zhishan, Xu,Cheng Zhong, Dou,Dejing. COMO: Efficient Deep Neural Networks Expansion With COnvolutional MaxOut[J]. IEEE Transactions on Multimedia, 2020, 23, 1722-1730.
Authors:
Zhao,Baoxin
;
Xiong,Haoyi
;
Bian,Jiang
;
Guo,Zhishan
;
Xu,Cheng Zhong
; et al.
Favorite
|
TC[WOS]:
6
TC[Scopus]:
7
IF:
8.4
/
8.0
|
Submit date:2021/03/09
Computer Architecture
Convolution
Convolutional Neural Networks
Deep Learning
Spatial Resolution
Transforms
Spatiotemporal data fusion in graph convolutional networks for traffic prediction
Journal article
Zhao, Baoxin, Gao, Xitong, Liu, Jianqi, Zhao, Juanjuan, Xu, Chengzhong. Spatiotemporal data fusion in graph convolutional networks for traffic prediction[J]. IEEE Access, 2020, 8, 76632-76641.
Authors:
Zhao, Baoxin
;
Gao, Xitong
;
Liu, Jianqi
;
Zhao, Juanjuan
;
Xu, Chengzhong
Favorite
|
TC[WOS]:
19
TC[Scopus]:
20
IF:
3.4
/
3.7
|
Submit date:2021/03/09
Data Fusion
Graph Convolutional Networks
Multi-source Data
Traffic Prediction
A Congestion Diffusion Model with Influence Maximization for Traffic Bottlenecks Identification in Metrocity Scales
Conference paper
Baoxin Zhao, Chengzhong Xu, Siyuan Liu, Juanjuan Zhao, Li Li. A Congestion Diffusion Model with Influence Maximization for Traffic Bottlenecks Identification in Metrocity Scales[C], NEW YORK:IEEE, 2019, 1717-1722.
Authors:
Baoxin Zhao
;
Chengzhong Xu
;
Siyuan Liu
;
Juanjuan Zhao
;
Li Li
Favorite
|
TC[WOS]:
4
TC[Scopus]:
4
|
Submit date:2021/03/09
Bottlenecks Identification
Influence Maximization
Traffic Congestion Diffusion
Traffic Flow Influence