UM

Browse/Search Results:  1-10 of 26 Help

Selected(0)Clear Items/Page:    Sort:
A novel perturbation-based degraded image super-resolution method for object recognition in intelligent transportation system Journal article
Zhang, Cheng, Zeng, Shan, Yang, Zhiguang, Chen, Yulong, Li, Hao, Tang, Yuanyan. A novel perturbation-based degraded image super-resolution method for object recognition in intelligent transportation system[J]. Neural Computing and Applications, 2024, 121836.
Authors:  Zhang, Cheng;  Zeng, Shan;  Yang, Zhiguang;  Chen, Yulong;  Li, Hao; et al.
Favorite | TC[Scopus]:0  IF:4.5/4.7 | Submit date:2025/01/13
Image Super-resolution Reconstruction  Perturbation Mechanism  Intelligent Transportation Systems  Traffic Sign Recognition  
Multi-graph embedding for partial label learning Journal article
Li,Hongyan, Vong,Chi Man, Wan,Zhonglin. Multi-graph embedding for partial label learning[J]. Neural Computing and Applications, 2023, 35, 20253–20271.
Authors:  Li,Hongyan;  Vong,Chi Man;  Wan,Zhonglin
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.7 | Submit date:2023/08/03
Disambiguation  Graph Structure  Multi-graph Embedding  Partial Label Learning  
Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis Other
2023-05-27
Authors:  Fong,Simon;  Fortino,Giancarlo;  Ghista,Dhanjoo;  Piccialli,Francesco
Favorite | TC[WOS]:0 TC[Scopus]:3 | Submit date:2023/08/03
Deep understanding of big geo-social data for autonomous vehicles Other
2022-12-08
Authors:  Shang, Shuo;  Shen, Jianbing;  Wen, Ji Rong;  Kalnis, Panos
Favorite | TC[WOS]:3 TC[Scopus]:3 | Submit date:2023/03/06
Completion and augmentation-based spatiotemporal deep learning approach for short-term metro origin-destination matrix prediction under limited observable data Journal article
Jiexia Ye, Juanjuan Zhao, Furong Zheng, Chengzhong Xu. Completion and augmentation-based spatiotemporal deep learning approach for short-term metro origin-destination matrix prediction under limited observable data[J]. NEURAL COMPUTING & APPLICATIONS, 2022, 35(4), 3325 - 3341.
Authors:  ; et al.
Favorite | TC[WOS]:12 TC[Scopus]:14  IF:4.5/4.7 | Submit date:2023/01/30
Origin-destination Matrix Prediction  Destination Distribution Availability  Self-attention Mechanism  Temporal Convolution Network  
DCRS: a deep contrast reciprocal recommender system to simultaneously capture user interest and attractiveness for online dating Journal article
Linhao Luo, Xiaofeng Zhang, Xiaoyun Chen, Kai Liu, Dan Peng, Xiaofei Yang. DCRS: a deep contrast reciprocal recommender system to simultaneously capture user interest and attractiveness for online dating[J]. Neural Computing and Applications, 2022, 34(8), 6413-6425.
Authors:  Linhao Luo;  Xiaofeng Zhang;  Xiaoyun Chen;  Kai Liu;  Dan Peng; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.5/4.7 | Submit date:2022/05/04
Graph Embedding  Online Dating  Reciprocal Recommendation  Recommender System  
LMSVCR: novel effective method of semi-supervised multi-classification Journal article
Dong, Zijie, Qin, Yimo, Zou, Bin, Xu, Jie, Tang, Yuan Yan. LMSVCR: novel effective method of semi-supervised multi-classification[J]. Neural Computing and Applications, 2022, 34(5), 3857-3873.
Authors:  Dong, Zijie;  Qin, Yimo;  Zou, Bin;  Xu, Jie;  Tang, Yuan Yan
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:4.5/4.7 | Submit date:2022/03/28
Laplacian Svm  Learning Rate  Multi-classification  Semi-supervised Learning  Support Vector Classification-regression  
SmartDL: energy-aware decremental learning in a mobile-based federation for geo-spatial system Journal article
Wenting Zou, Li Li, Zichen Xu, Dan Wu, ChengZhong Xu, Yuhao Wang, Haoyang Zhu, Xiao Sun. SmartDL: energy-aware decremental learning in a mobile-based federation for geo-spatial system[J]. NEURAL COMPUTING & APPLICATIONS, 2021, 35(5), 3677–3696.
Authors:  Wenting Zou;  Li Li;  Zichen Xu;  Dan Wu;  ChengZhong Xu; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.5/4.7 | Submit date:2022/05/13
Data Privacy  Energy Management  Federated Learning  Mobile Computing  
Approximate empirical kernel map-based iterative extreme learning machine for clustering Journal article
Chen, Chuangquan, Vong, Chi Man, Wong, Pak Kin, Tai, Keng Iam. Approximate empirical kernel map-based iterative extreme learning machine for clustering[J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32(12), 8031-8046.
Authors:  Chen, Chuangquan;  Vong, Chi Man;  Wong, Pak Kin;  Tai, Keng Iam
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:4.5/4.7 | Submit date:2022/08/09
Maximum Margin Clustering  Extreme Learning Machine  Approximate Empirical Kernel Map  Kernel Learning  Compact Model  
Approximate empirical kernel map-based iterative extreme learning machine for clustering Journal article
Chuangquan Chen, Chi-Man Vong, Pak-Kin Wong, Keng-Iam Tai. Approximate empirical kernel map-based iterative extreme learning machine for clustering[J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32(12), 8031-8046.
Authors:  Chuangquan Chen;  Chi-Man Vong;  Pak-Kin Wong;  Keng-Iam Tai
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:4.5/4.7 | Submit date:2021/03/09
Maximum Margin Clustering  Extreme Learning Machine  Approximate Empirical Kernel Map  Kernel Learning  Compact Model