UM

Browse/Search Results:  1-10 of 128 Help

Selected(0)Clear Items/Page:    Sort:
Team-wise effective communication in multi-agent reinforcement learning Journal article
Yang, Ming, Zhao, Kaiyan, Wang, Yiming, Dong, Renzhi, Du, Yali, Liu, Furui, Zhou, Mingliang, U, Leong Hou. Team-wise effective communication in multi-agent reinforcement learning[J]. Autonomous Agents and Multi-Agent Systems, 2024, 38(2), 36.
Authors:  Yang, Ming;  Zhao, Kaiyan;  Wang, Yiming;  Dong, Renzhi;  Du, Yali; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:2.0/2.1 | Submit date:2024/08/05
Communication  Competition  Cooperation  Multi-agent System  Reinforcement Learning  
City metro network expansion based on multi-objective reinforcement learning Journal article
Zhang, Liqing, U, Leong Hou, Ni, Shaoquan, Chen, Dingjun, Li, Zhenning, Wang, Wenxian, Xian, Weizhi. City metro network expansion based on multi-objective reinforcement learning[J]. Transportation Research Part C: Emerging Technologies, 2024, 169, 104880.
Authors:  Zhang, Liqing;  U, Leong Hou;  Ni, Shaoquan;  Chen, Dingjun;  Li, Zhenning; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:7.6/9.6 | Submit date:2024/11/05
Actor-critic Network  Metro Expansion  Reinforcement Learning  
Adaptive Tie-line Power Smoothing with Renewable Generation Based on Risk-aware Reinforcement Learning Journal article
Peipei Yu, Hongcai Zhang, Yonghua Song. Adaptive Tie-line Power Smoothing with Renewable Generation Based on Risk-aware Reinforcement Learning[J]. IEEE Transactions on Power Systems, 2024, 39(6), 6819-6832.
Authors:  Peipei Yu;  Hongcai Zhang;  Yonghua Song
Favorite | TC[WOS]:2 TC[Scopus]:4  IF:6.5/7.4 | Submit date:2024/04/24
Tie-line Power Smoothing  Demand Response  Renewable Generation  Risk-aware Reinforcement Learning  
A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data Journal article
Yang, Zhixue, Ren, Zhouyang, Li, Hui, Sun, Zhiyuan, Feng, Jianbing, Xia, Weiyi. A multi-stage stochastic dispatching method for electricity‑hydrogen integrated energy systems driven by model and data[J]. Applied Energy, 2024, 371, 123668.
Authors:  Yang, Zhixue;  Ren, Zhouyang;  Li, Hui;  Sun, Zhiyuan;  Feng, Jianbing; et al.
Favorite | TC[WOS]:3 TC[Scopus]:6  IF:10.1/10.4 | Submit date:2024/07/04
Chance-constrained  Electricity‑hydrogen Integrated Energy Systems  Hydrogen Energy  Multi-agent Deep Reinforcement Learning  Uncertainty  
Attention-Based SIC Ordering and Power Allocation for Non-Orthogonal Multiple Access Networks Journal article
Huang, Liang, Zhu, Bincheng, Nan, Runkai, Chi, Kaikai, Wu, Yuan. Attention-Based SIC Ordering and Power Allocation for Non-Orthogonal Multiple Access Networks[J]. IEEE Transactions on Mobile Computing, 2024.
Authors:  Huang, Liang;  Zhu, Bincheng;  Nan, Runkai;  Chi, Kaikai;  Wu, Yuan
Favorite | TC[Scopus]:0  IF:7.7/6.5 | Submit date:2024/11/05
Non-orthogonal Multiple Access (Noma)  Successive Interference Cancellation (Sic)  Deep Reinforcement Learning (Drl)  Resource Allocation  
Offline DRL for Price-Based Demand Response: Learning From Suboptimal Data and Beyond Journal article
Tao Qian, Zeyu Liang, Chengcheng Shao, Hongcai Zhang, Qinran Hu, Zaijun Wu. Offline DRL for Price-Based Demand Response: Learning From Suboptimal Data and Beyond[J]. IEEE Transactions on Smart Grid, 2024, 15(5), 4618-4635.
Authors:  Tao Qian;  Zeyu Liang;  Chengcheng Shao;  Hongcai Zhang;  Qinran Hu; et al.
Favorite | TC[WOS]:3 TC[Scopus]:5  IF:8.6/9.6 | Submit date:2024/04/24
Demand Response  Deep Reinforcement Learning  Offline Learning  Suboptimal Data  Uncertainty  
RL-CWtrans Net: multimodal swimming coaching driven via robot vision Journal article
Wang, Guanlin. RL-CWtrans Net: multimodal swimming coaching driven via robot vision[J]. Frontiers in Neurorobotics, 2024, 18, 1439188.
Authors:  Wang, Guanlin
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.6/3.1 | Submit date:2024/09/03
Artificial Neural Networks  Clip  Feature Extraction  Multimodal Robot  Reinforcement Learning  Robot Vision  Swin-transformer  
A Two-stage Deep Reinforcement Learning Framework for MEC-enabled Adaptive 360-Degree Video Streaming Journal article
Bi Suzhi, Chen Haoguo, Li Xian, Wang Shuoyao, Wu Yuan, Qian Liping. A Two-stage Deep Reinforcement Learning Framework for MEC-enabled Adaptive 360-Degree Video Streaming[J]. IEEE Transactions on Mobile Computing, 2024, 1-17.
Authors:  Bi Suzhi;  Chen Haoguo;  Li Xian;  Wang Shuoyao;  Wu Yuan; et al.
Favorite | TC[Scopus]:1  IF:7.7/6.5 | Submit date:2024/08/26
Accuracy  Adaptive Streaming  Bit Rate  Deep Reinforcement Learning  Multi-access Edge Computing  Quality Of Experience  Quality Of Experience  Real-time Systems  Resists  Streaming Media  Wireless Communication  
Deep Reinforcement Learning for Integrated Sensing and Communication in RIS-assisted 6G V2X System Journal article
Long, Xudong, Zhao, Yubin, Wu, Huaming, Xu, Cheng Zhong. Deep Reinforcement Learning for Integrated Sensing and Communication in RIS-assisted 6G V2X System[J]. IEEE Internet of Things Journal, 2024.
Authors:  Long, Xudong;  Zhao, Yubin;  Wu, Huaming;  Xu, Cheng Zhong
Favorite | TC[Scopus]:0  IF:8.2/9.0 | Submit date:2024/10/10
6g Mobile Communication  6g V2x  Accuracy  Array Signal Processing  Channel Models  Deep Reinforcement Learning  Fisher Information Matrix  Integrated Sensing And Communication  Isac  Optimization  Reconfigurable Intelligent Surface  Vehicle-to-everything  
DRPC: Distributed Reinforcement Learning Approach for Scalable Resource Provisioning in Container-based Clusters Journal article
Bai, Haoyu, Xu, Minxian, Ye, Kejiang, Buyya, Rajkumar, Xu, Chengzhong. DRPC: Distributed Reinforcement Learning Approach for Scalable Resource Provisioning in Container-based Clusters[J]. IEEE TRANSACTIONS ON SERVICE COMPUTING, 2024, 1-12.
Authors:  Bai, Haoyu;  Xu, Minxian;  Ye, Kejiang;  Buyya, Rajkumar;  Xu, Chengzhong
Favorite | TC[Scopus]:0  IF:5.5/5.9 | Submit date:2024/08/05
Cloud Computing  Distributed Resources Management  Reinforcement Learning  Kubernetes  Microservice