UM

Browse/Search Results:  1-10 of 35 Help

Selected(0)Clear Items/Page:    Sort:
The Eigenvectors of Single-spiked Complex Wishart Matrices: Finite and Asymptotic Analyses Journal article
Prathapasinghe Dharmawansa, Pasan Dissanayake, Yang Chen. The Eigenvectors of Single-spiked Complex Wishart Matrices: Finite and Asymptotic Analyses[J]. IEEE transactions on information theory, 2022, 68(12), 8092-8120.
Authors:  Prathapasinghe Dharmawansa;  Pasan Dissanayake;  Yang Chen
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.2/2.4 | Submit date:2022/07/04
Convergence In Distribution  Eigenvalues  Eigenvectors  Gauss Hypergeometric Function  Hypergeometric Function Of Two Matrix Arguments  Laguerre Polynomials  Moment Generating Function (M.g.f.)  Probability Density Function (P.d.f.)  Single-spiked Covariance  Wishart Matrix  
Distribution of the Scaled Condition Number of Single-spiked Complex Wishart Matrices Journal article
Pasan Dissanayake, Prathapasinghe Dharmawansa, Yang Chen. Distribution of the Scaled Condition Number of Single-spiked Complex Wishart Matrices[J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68(10), 6716-6737.
Authors:  Pasan Dissanayake;  Prathapasinghe Dharmawansa;  Yang Chen
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.2/2.4 | Submit date:2022/07/04
Condition Number  Cumulative Distribution Function (C.d.f.)  Eigenvalues  Hypergeometric Function Of Two Matrix Arguments  Moment Generating Function (M.g.f.)  Orthogonal Polynomials  Probability Density Function (P.d.f.)  Single-spiked Covariance  Wishart Matrix  
A novel generative approach for modal frequency probabilistic prediction under varying environmental condition using incomplete information Journal article
Mu, He Qing, Shen, Ji Hui, Zhao, Zi Tong, Liu, Han Teng, Yuen, Ka Veng. A novel generative approach for modal frequency probabilistic prediction under varying environmental condition using incomplete information[J]. Engineering Structures, 2022, 252(113571).
Authors:  Mu, He Qing;  Shen, Ji Hui;  Zhao, Zi Tong;  Liu, Han Teng;  Yuen, Ka Veng
Favorite | TC[WOS]:6 TC[Scopus]:6  IF:5.6/5.8 | Submit date:2022/03/04
Bayesian Inference  Copula  Model Class Selection  Multivariate Probability Density Function  Structural Health Monitoring  
A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for frequency response functions and transmissibility functions Journal article
Wang-Ji Yan, Meng-Yun Zhao, Michael Beer, Wei-Xin Ren, Dimitrios Chronopoulos. A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for frequency response functions and transmissibility functions[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145, 106886.
Authors:  Wang-Ji Yan;  Meng-Yun Zhao;  Michael Beer;  Wei-Xin Ren;  Dimitrios Chronopoulos
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:7.9/8.0 | Submit date:2022/08/21
Probability Density Function  Frequency Response Function  Transmissibility Function  Complex Ratio Distribution  Sparse-grid Quadrature Rule  Structural Health Monitoring  
A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for raw frequency response functions and transmissibility functions Journal article
Wang-Ji Yan, Meng-Yun Zhao, Michael Beer, Wei-Xin Ren, Dimitrios Chronopoulos. A unified scheme to solving arbitrary complex-valued ratio distribution with application to statistical inference for raw frequency response functions and transmissibility functions[J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145, 106886.
Authors:  Wang-Ji Yan;  Meng-Yun Zhao;  Michael Beer;  Wei-Xin Ren;  Dimitrios Chronopoulos
Favorite | TC[WOS]:5 TC[Scopus]:5  IF:7.9/8.0 | Submit date:2021/03/11
Probability Density Function  Frequency Response Function  Transmissibility Function  Complex Ratio Distribution  Sparse-grid Quadrature Rule  Structural Health Monitoring  
PDF Solution of non-linear systems driven by Poisson pulses with non-Gaussian distributed amplitude Journal article
Zhu, H. T., Er, G. K., Iu, V. P., Kou, K. P.. PDF Solution of non-linear systems driven by Poisson pulses with non-Gaussian distributed amplitude[J]. International Journal of Computational Methods, 2012, 1240018-1-1240018-10.
Authors:  Zhu, H. T.;  Er, G. K.;  Iu, V. P.;  Kou, K. P.
Favorite |  | Submit date:2022/07/14
Nonlinear  probability density function  stochastic process  Poisson impulse  
PDF Solution of non-linear systems driven by Poisson pulses with non-Gaussian distributed amplitude Journal article
Zhu, H. T., Er, G. K., Iu, V. P., Kou, K. P.. PDF Solution of non-linear systems driven by Poisson pulses with non-Gaussian distributed amplitude[J]. International Journal of Computational Methods, 2012, 9(1), 1240018-1-10.
Authors:  Zhu, H. T.;  Er, G. K.;  Iu, V. P.;  Kou, K. P.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.4/1.3 | Submit date:2022/07/14
Nonlinear  Probability Density Function  Stochastic Process  Poisson Impulse  
Exponential polynomial closure method for solving truncated kolmogorovfeller equation Journal article
Zhu H.T., Er G.K., Iu V.P., Kou K.P.. Exponential polynomial closure method for solving truncated kolmogorovfeller equation[J]. International Journal of Computational Methods, 2012, 9(1).
Authors:  Zhu H.T.;  Er G.K.;  Iu V.P.;  Kou K.P.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:1.4/1.3 | Submit date:2019/02/12
Nonlinear  Poisson Impulse  Probability Density Function  Stochastic Process  
A New Method for the Probabilistic Solutions of Large-Scale Nonlinear Stochastic Dynamic Systems Conference paper
Er G.K., Iu V.P.. A New Method for the Probabilistic Solutions of Large-Scale Nonlinear Stochastic Dynamic Systems[C]:SPRINGER, 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES, 2011, 25-34.
Authors:  Er G.K.;  Iu V.P.
Favorite | TC[WOS]:21 TC[Scopus]:25 | Submit date:2019/02/12
Fokker-planck Equation  Nonlinear Stochastic Dynamic System  Probability Density Function  Subspace  
The Approximate Solutions of FPK Equations in High Dimensions for Some Nonlinear Stochastic Dynamic Systems Journal article
Er, G. K., Iu, V. P.. The Approximate Solutions of FPK Equations in High Dimensions for Some Nonlinear Stochastic Dynamic Systems[J]. Communications in Computational Physics, 2011, 1241-1256.
Authors:  Er, G. K.;  Iu, V. P.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2022/08/28
Nonlinear Stochastic Dynamic Systems  Large-scale Systems  Probability Density Function  Fokker-planck-kolmogorov Equation  Subspace