UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er G.K., Iu V.P., Wang K., Guo S.S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 85(3), 1887-1899.
Authors:  Er G.K.;  Iu V.P.;  Wang K.;  Guo S.S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2019/02/12
Cable  Exponential Polynomial Closure Method  Fokker–planck–kolmogorov Equation  Multi-degree-of-freedom  Nonlinear Random Vibration  State-space-split Method  
Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise Journal article
Er, G. K., Iu, V. P., Wang, K., Guo, S. S.. Stationary probabilistic solutions of the cables with small sag and modeled as MDOF systems excited by Gaussian white noise[J]. Nonlinear Dynamics, 2016, 1887-1899.
Authors:  Er, G. K.;  Iu, V. P.;  Wang, K.;  Guo, S. S.
Favorite | TC[WOS]:17 TC[Scopus]:18 | Submit date:2022/08/28
Cable  Multi-degree-of-freedom  Nonlinear Random Vibration  Fokker-planck-kolmogorov Equation  State-space-split Method  Exponential Polynomial Closure Method.  
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises Journal article
Guo, S, Er, G. K., Lam, C. C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 597-604.
Authors:  Guo, S;  Er, G. K.;  Lam, C. C.
Favorite | TC[WOS]:17 TC[Scopus]:19  IF:5.2/4.8 | Submit date:2022/08/06
Correlated Excitations  Exponential Polynomial Closure Method  Nonzero Mean  Fokker-planck-kolmogorov Equation  
Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises Journal article
Guo S.-S., Er G.-K., Lam C.C.. Probabilistic solutions of nonlinear oscillators excited by correlated external and velocity-parametric Gaussian white noises[J]. Nonlinear Dynamics, 2014, 77(3), 597-604.
Authors:  Guo S.-S.;  Er G.-K.;  Lam C.C.
Favorite | TC[WOS]:17 TC[Scopus]:19 | Submit date:2019/02/13
Correlated Excitations  Exponential Polynomial Closure Method  Fokker-planck-kolmogorov Equation  Nonzero Mean  
Probabilistic Solution of the Stochastic Oscillators with Nonzero Mean Response Conference paper
Er, G. K., Guo, S. S., Iu, V. P.. Probabilistic Solution of the Stochastic Oscillators with Nonzero Mean Response[C], Beijing:Chinese Society of Mechanics, 2012.
Authors:  Er, G. K.;  Guo, S. S.;  Iu, V. P.
Favorite |  | Submit date:2022/07/14
Stochastic nonlinear oscillator  even nonlinearity  Fokker-Planck equation  exponential polynomial closure method  
The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation Journal article
Guo S.-S., Er G.-K.. The probabilistic solution of stochastic oscillators with even nonlinearity under poisson excitation[J]. Central European Journal of Physics, 2012, 10(3), 702-707.
Authors:  Guo S.-S.;  Er G.-K.
Favorite | TC[WOS]:8 TC[Scopus]:10  IF:0.765/1.012 | Submit date:2019/02/13
Even Nonlinearity  Exponential-polynomial Closure Method  Fokker-planck-komogorov (Fpk) Equation  Poisson White Noise