UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Short-Term Traffic Prediction by Two-Level Data Driven Model in 5G-Enabled Edge Computing Networks Journal article
Huang,Yupin, Qian,Liping, Feng,Anqi, Yu,Ningning, Wu,Yuan. Short-Term Traffic Prediction by Two-Level Data Driven Model in 5G-Enabled Edge Computing Networks[J]. IEEE Access, 2019, 7, 123981-123991.
Authors:  Huang,Yupin;  Qian,Liping;  Feng,Anqi;  Yu,Ningning;  Wu,Yuan
Favorite | TC[WOS]:11 TC[Scopus]:16  IF:3.4/3.7 | Submit date:2021/03/11
Deep Belief Network  Edge Computing  Hidden Markov Model  Short-term Traffic Prediction  
A deep belief network for electricity utilisation feature analysis of air conditioners using a smart IoT platform Journal article
Wei Song, Ning Feng, Yifei Tian, Simon Fong, Kyungeun Cho. A deep belief network for electricity utilisation feature analysis of air conditioners using a smart IoT platform[J]. Journal of Information Processing Systems, 2018, 14(1), 162-175.
Authors:  Wei Song;  Ning Feng;  Yifei Tian;  Simon Fong;  Kyungeun Cho
Favorite | TC[WOS]:11 TC[Scopus]:17 | Submit date:2019/02/13
Cloud Computing  Deep Belief Network  Iot  Power Conservation  Smart Metre  
Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning Journal article
Liu, Z.B., Jia, Z., Vong, C. M., Bu, S.H., Han, J.W., Tang, X.J.. Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning[J]. IEEE Transactions on Industrial Informatics (SCI-E), 2017, 1213-1226.
Authors:  Liu, Z.B.;  Jia, Z.;  Vong, C. M.;  Bu, S.H.;  Han, J.W.; et al.
Favorite |   IF:11.7/11.4 | Submit date:2022/08/09
Analog circuits  deep belief network  deep learning  diagnosis  failure  fault  restricted Boltzmann machines.  
Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning Journal article
Liu, Zhenbao, Jia, Zhen, Vong, Chi-Man, Bu, Shuhui, Han, Junwei, Tang, Xiaojun. Capturing High-Discriminative Fault Features for Electronics-Rich Analog System via Deep Learning[J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13(3), 1213-1226.
Authors:  Liu, Zhenbao;  Jia, Zhen;  Vong, Chi-Man;  Bu, Shuhui;  Han, Junwei; et al.
Favorite | TC[WOS]:91 TC[Scopus]:110  IF:11.7/11.4 | Submit date:2018/10/30
Analog Circuits  Deep Belief Network  Deep Learning  Diagnosis  Failure  Fault  Restricted Boltzmann Machines