UM

Browse/Search Results:  1-6 of 6 Help

Selected(0)Clear Items/Page:    Sort:
Machine Learning-Based Probabilistic Forecasting of Wind Power Generation: A Combined Bootstrap and Cumulant Method Journal article
Wan, Can, Cui, Wenkang, Song, Yonghua. Machine Learning-Based Probabilistic Forecasting of Wind Power Generation: A Combined Bootstrap and Cumulant Method[J]. IEEE Transactions on Power Systems, 2024, 39(1), 1370-1383.
Authors:  Wan, Can;  Cui, Wenkang;  Song, Yonghua
Favorite | TC[WOS]:7 TC[Scopus]:10  IF:6.5/7.4 | Submit date:2024/02/22
Bootstrap  Cumulant  Machine Learning  Probabilistic Forecasting  Uncertainty Quantification  Wind Power  
Nonparametric Probabilistic Optimal Power Flow Journal article
Li, Yunyi, Wan, Can, Chen, Dawei, Song, Yonghua. Nonparametric Probabilistic Optimal Power Flow[J]. IEEE Transactions on Power Systems, 2022, 37(4), 2758-2770.
Authors:  Li, Yunyi;  Wan, Can;  Chen, Dawei;  Song, Yonghua
Favorite | TC[WOS]:14 TC[Scopus]:16  IF:6.5/7.4 | Submit date:2022/05/13
Probabilistic Optimal Power Flow  Critical Region Integral  Wind Power  Quantile  Uncertainty  
Cost-Oriented Prediction Intervals: On Bridging the Gap Between Forecasting and Decision Journal article
Zhao, Changfei, Wan, Can, Song, Yonghua. Cost-Oriented Prediction Intervals: On Bridging the Gap Between Forecasting and Decision[J]. IEEE Transactions on Power Systems, 2022, 37(4), 3048-3062.
Authors:  Zhao, Changfei;  Wan, Can;  Song, Yonghua
Favorite | TC[WOS]:32 TC[Scopus]:37  IF:6.5/7.4 | Submit date:2022/05/13
Costs  Decision Making  Decision Making  Forecasting  Forecasting  Machine Learning  Prediction Interval  Probabilistic Logic  Renewable Energy  Renewable Energy Sources  Uncertainty  Uncertainty  Wind Power Generation  
An Adaptive Ensemble Data Driven Approach for Nonparametric Probabilistic Forecasting of Electricity Load Journal article
Wan, Can, Cao, Zhaojing, Lee, Wei Jen, Song, Yonghua, Ju, Ping. An Adaptive Ensemble Data Driven Approach for Nonparametric Probabilistic Forecasting of Electricity Load[J]. IEEE Transactions on Smart Grid, 2021, 12(6), 5396-5408.
Authors:  Wan, Can;  Cao, Zhaojing;  Lee, Wei Jen;  Song, Yonghua;  Ju, Ping
Favorite | TC[WOS]:20 TC[Scopus]:30  IF:8.6/9.6 | Submit date:2021/12/08
Forecasting  Probabilistic Logic  Uncertainty  Predictive Models  Load Forecasting  Load Modeling  Wind Power Generation  Probabilistic Forecasting  Load Forecasting  Data Mining  Uncertainty  Information Entropy  Weighted Resample  
Optimal Control of AGC Systems Considering Non-Gaussian Wind Power Uncertainty Journal article
Chen,Xiaoshuang, Lin,Jin, Liu,Feng, Song,Yonghua. Optimal Control of AGC Systems Considering Non-Gaussian Wind Power Uncertainty[J]. IEEE Transactions on Power Systems, 2019, 34(4), 2730-2743.
Authors:  Chen,Xiaoshuang;  Lin,Jin;  Liu,Feng;  Song,Yonghua
Favorite | TC[WOS]:28 TC[Scopus]:38  IF:6.5/7.4 | Submit date:2021/03/09
Automatic Generation Control  Itô Theory  Non-gaussian Distribution  Stochastic Control  Stochastic Differential Equation  Wind Power Uncertainty  
A Multi-Model Combination Approach for Probabilistic Wind Power Forecasting Journal article
Lin, You, Yang, Ming, Wan, Can, Wang, Jianhui, Song, Yonghua. A Multi-Model Combination Approach for Probabilistic Wind Power Forecasting[J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10(1), 226-237.
Authors:  Lin, You;  Yang, Ming;  Wan, Can;  Wang, Jianhui;  Song, Yonghua
Favorite | TC[WOS]:114 TC[Scopus]:135  IF:8.6/8.6 | Submit date:2019/01/17
Terms-multi-model Combination  Probabilistic Forecasting  Wind Power  Uncertainty