UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Reproducing kernel representation of the solution of second order linear three-point boundary value problem Journal article
Bai, Hongfang, Leong, Ieng Tak, Dang, Pei. Reproducing kernel representation of the solution of second order linear three-point boundary value problem[J]. Mathematical Methods in the Applied Sciences, 2022, 45(17), 11181-11205.
Authors:  Bai, Hongfang;  Leong, Ieng Tak;  Dang, Pei
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:2.1/2.0 | Submit date:2022/06/14
Numerical Solutions  Reproducing Kernel Hilbert Space  Three-point Boundary Value Problem  W-poafd  Weak Maximal Selection Principle  
Harmonic solutions and weak solutions of two-dimensional rotational incompressible Euler equations Journal article
Chen, Yang, Wang, Yunhu, Yuen, Manwai. Harmonic solutions and weak solutions of two-dimensional rotational incompressible Euler equations[J]. Partial Differential Equations in Applied Mathematics, 2022, 5, 100336.
Authors:  Chen, Yang;  Wang, Yunhu;  Yuen, Manwai
Favorite | TC[Scopus]:0 | Submit date:2022/05/13
Euler Equations  Laplace Equation  Weak Solutions  
On variational properties of balanced central fractional derivatives Journal article
Xu, Y.F., Sun, H. W., Sheng, Q.. On variational properties of balanced central fractional derivatives[J]. International Journal of Computer Mathematics, 2018, 1195-1209.
Authors:  Xu, Y.F.;  Sun, H. W.;  Sheng, Q.
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:1.7/1.5 | Submit date:2022/06/28
Fractional Derivatives  Left-sided And Right-sided Formulae  Fractional Differential Equations  Ritz–galerkin Method  Weak Solutions  Variational Principal  
On variational properties of balanced central fractional derivatives Journal article
Xu,Yufeng, Sun,Hai Wei, Sheng,Qin. On variational properties of balanced central fractional derivatives[J]. International Journal of Computer Mathematics, 2018, 95(6-7), 1195-1209.
Authors:  Xu,Yufeng;  Sun,Hai Wei;  Sheng,Qin
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:1.7/1.5 | Submit date:2019/05/27
Fractional Derivatives  Fractional Differential Equations  Left-sided And Right-sided Formulae  Ritz–galerkin Method  Variational Principal  Weak Solutions  
Numerical methods for weak solution of wave equation with van der Pol type boundary conditions Journal article
Liu, J., Huang, Y., Sun, H. W., Xiao, M.Q.. Numerical methods for weak solution of wave equation with van der Pol type boundary conditions[J]. Numerical Methods for Partial Differential Equations, 2016, 373-398.
Authors:  Liu, J.;  Huang, Y.;  Sun, H. W.;  Xiao, M.Q.
Favorite | TC[WOS]:9 TC[Scopus]:10 | Submit date:2022/07/25
Wave Equation  Van Der Pol Type Boundary Condition  Weak Solutions  Chaotic Behavior  Numerical Integration  Finite Difference