UM

Browse/Search Results:  1-5 of 5 Help

Selected(0)Clear Items/Page:    Sort:
Splitting ADI Scheme for Fractional Laplacian Wave Equations Journal article
Sun, Tao, Sun, Hai Wei. Splitting ADI Scheme for Fractional Laplacian Wave Equations[J]. NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2024, 17(3), 697-726.
Authors:  Sun, Tao;  Sun, Hai Wei
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:1.9/1.3 | Submit date:2024/10/10
Alternative Direction Implicit Scheme  Fractional Laplacian Wave Equation  Gohberg-semencul Formula  Operator Splitting  
A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation Journal article
Wang Z., Vong S.. A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation[J]. International Journal of Computer Mathematics, 2015, 92(5), 970-979.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:27 TC[Scopus]:28 | Submit date:2018/12/24
Compact Adi Scheme  Convergence  Finite Difference Scheme  Fractional Diffusion-wave Equation  Weighted And Shifted Grünwald Difference Operator  
Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation Journal article
Wang Z., Vong S.. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2014, 277, 1.
Authors:  Wang Z.;  Vong S.
Favorite | TC[WOS]:283 TC[Scopus]:301 | Submit date:2018/10/30
Compact Difference Scheme  Fractional Diffusion-wave Equation  Modified Anomalous Fractional Sub-diffusion Equation  Weighted And Shifted Grünwald Difference Operator  
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article
Vong S.-W., Meng Q.-J., Lei S.-L.. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:  Vong S.-W.;  Meng Q.-J.;  Lei S.-L.
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.8 | Submit date:2018/12/24
Conserved Quantity  Nonlinear Schrödinger Equation  Orthogonal Spline Collocation Method  Wave Operator  
On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article
Vong,Seak Weng, Meng,Qing Jiang, Lei,Siu Long. On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator[J]. Numerical Methods for Partial Differential Equations, 2013, 29(2), 693-705.
Authors:  Vong,Seak Weng;  Meng,Qing Jiang;  Lei,Siu Long
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:2.1/2.8 | Submit date:2021/03/09
Conserved Quantity  Nonlinear Schrödinger Equation  Orthogonal Spline Collocation Method  Wave Operator