×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [7]
Authors
KOU KIT IAN [5]
ZHANG LIMING [1]
Document Type
Journal article [18]
Date Issued
2021 [1]
2017 [2]
2016 [3]
2015 [5]
2014 [2]
2013 [3]
More...
Language
英語English [18]
Source Publication
Advances in Appl... [2]
International Jo... [2]
Journal of Mathe... [2]
Annali di Matema... [1]
Applied Mathemat... [1]
Complex Variable... [1]
More...
Indexed By
SCIE [17]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 18
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Discrete uncertainty principle in quaternion setting and application in signal reconstruction
Journal article
Yan Yang, Kit Ian Kou, Cuiming Zou. Discrete uncertainty principle in quaternion setting and application in signal reconstruction[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2021, 19(5).
Authors:
Yan Yang
;
Kit Ian Kou
;
Cuiming Zou
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
0.9
/
1.1
|
Submit date:2021/12/08
Discrete Uncertainty Principle
Quaternion Fourier Transform
Signal Reconstruction
Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere
Journal article
Pei Dang, Tao Qian, Qiuhui Chen. Uncertainty Principle and Phase–Amplitude Analysis of Signals on the Unit Sphere[J]. Advances in Applied Clifford Algebras, 2017, 27(4), 2985-3013.
Authors:
Pei Dang
;
Tao Qian
;
Qiuhui Chen
Favorite
|
TC[WOS]:
6
TC[Scopus]:
7
|
Submit date:2019/02/11
Phase Derivative
Spherical Dirac Operator
Spherical Hilbert Transform
Spherical Signals
Uncertainty Principle
Uncertainty principle for measurable sets and signal recovery in quaternion domains
Journal article
Kou, Kit Ian, Yang, Yan, Zou, Cuiming. Uncertainty principle for measurable sets and signal recovery in quaternion domains[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40(11), 3892-3900.
Authors:
Kou, Kit Ian
;
Yang, Yan
;
Zou, Cuiming
Favorite
|
TC[WOS]:
15
TC[Scopus]:
16
IF:
2.1
/
2.0
|
Submit date:2018/10/30
Signal Recovery
Uncertainty Principle
Quaternion Fourier Transform
Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces
Journal article
Pei Dang, Tao Qian, Yan Yang. Extra-strong uncertainty principles in relation to phase derivative for signals in Euclidean spaces[J]. Journal of Mathematical Analysis and Applications, 2016, 437(2), 912-940.
Authors:
Pei Dang
;
Tao Qian
;
Yan Yang
Favorite
|
TC[WOS]:
8
TC[Scopus]:
9
|
Submit date:2019/02/11
Amplitude Derivative
Hilbert Transform
Phase Derivative
Signals In Euclidean Spaces
Uncertainty Principle
Novel uncertainty principles associated with 2D quaternion Fourier transforms
Journal article
Yang Y., Ian Kou K.. Novel uncertainty principles associated with 2D quaternion Fourier transforms[J]. Integral Transforms and Special Functions, 2016, 27(3), 213-226.
Authors:
Yang Y.
;
Ian Kou K.
Favorite
|
TC[WOS]:
18
TC[Scopus]:
19
|
Submit date:2019/02/13
Covariance
Heisenberg's Uncertainty Principle
Quaternion Fourier Transform
Tighter Uncertainty Principles Based on Quaternion Fourier Transform
Journal article
Yan Yang, Pei Dang, Tao Qian. Tighter Uncertainty Principles Based on Quaternion Fourier Transform[J]. Advances in Applied Clifford Algebras, 2016, 26(1), 479-497.
Authors:
Yan Yang
;
Pei Dang
;
Tao Qian
Favorite
|
TC[WOS]:
19
TC[Scopus]:
22
|
Submit date:2019/02/11
Covariance
Quaternion Fourier Transform
Uncertainty Principle
Space-frequency analysis in higher dimensions and applications
Journal article
Yang Y., Dang P., Qian T.. Space-frequency analysis in higher dimensions and applications[J]. Annali di Matematica Pura ed Applicata, 2015, 194(4), 953-968.
Authors:
Yang Y.
;
Dang P.
;
Qian T.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
5
|
Submit date:2019/02/11
Frequency
Gauss Kernel
Hilbert Transform
Monogenic Signals
Poisson Kernel
UncertaInty PrInciple In Higher Dimensions
Pitt's inequality and the uncertainty principle associated with thc quaternion Fourier transform
Journal article
Chen, C, Kou, K. I., Liu, M.. Pitt's inequality and the uncertainty principle associated with thc quaternion Fourier transform[J]. Journal of mathematical analysis and applications, 2015, 681-700.
Authors:
Chen, C
;
Kou, K. I.
;
Liu, M.
Favorite
|
IF:
1.2
/
1.3
|
Submit date:2022/08/24
Quaternion Fourier transform
Pitt’s inequality
Logarithmic uncertainty estimate Uncertainty principle
Sharper uncertainty principles for the windowed Fourier transform
Journal article
Liu M.-S., Kou K.I., Morais J., Dang P.. Sharper uncertainty principles for the windowed Fourier transform[J]. Journal of Modern Optics, 2015, 62(1), 46-55.
Authors:
Liu M.-S.
;
Kou K.I.
;
Morais J.
;
Dang P.
Favorite
|
TC[WOS]:
7
TC[Scopus]:
8
|
Submit date:2019/02/13
Amplitude-phase Representation Of Signal
Hardy-sobolev Space
Heisenberg's Uncertainty Principle
Instantaneous Frequency
Signal Moment
Windowed Fourier Transform
Stronger uncertainty principles for hypercomplex signals
Journal article
Yang Y., Dang P., Qian T.. Stronger uncertainty principles for hypercomplex signals[J]. Complex Variables and Elliptic Equations, 2015, 60(12), 1696-1711.
Authors:
Yang Y.
;
Dang P.
;
Qian T.
Favorite
|
TC[WOS]:
12
TC[Scopus]:
13
|
Submit date:2019/02/11
Covariance
Fourier Transform
UncertaInty PrInciple In Higher Dimensions