UM

Browse/Search Results:  1-10 of 22 Help

Selected(0)Clear Items/Page:    Sort:
Neighbor Distribution Learning for Minority Class Augmentation Journal article
Zhou, Mengting, Gong, Zhiguo. Neighbor Distribution Learning for Minority Class Augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(12), 8901-8913.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:8.9/8.8 | Submit date:2024/09/03
Training  Topology  Graph Neural Networks  Data Models  Accuracy  Task Analysis  Image Color Analysis  Class-imbalanced Learning  Data Mining  Node Classification  
Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory Conference paper
Zhao, Chuanbing, Feng, Yuan, Gao, Feifei, Zhang, Yong, Ma, Shaodan, Poor, H. Vincent. Environment Sensing-aided Beam Prediction with Transfer Learning for Smart Factory[C]:Institute of Electrical and Electronics Engineers Inc., 2024, 2077-2082.
Authors:  Zhao, Chuanbing;  Feng, Yuan;  Gao, Feifei;  Zhang, Yong;  Ma, Shaodan; et al.
Favorite | TC[WOS]:0 TC[Scopus]:0 | Submit date:2024/11/05
Beam Prediction  Environment Sensing  Mmwave  Transfer Learning  Adaptation Models  Costs  Accuracy  Simulation  Training Data  Predictive Models  
Boosting Image Restoration via Priors from Pre-Trained Models Conference paper
Xu, Xiaogang, Kong, Shu, Hu, Tao, Liu, Zhe, Bao, Hujun. Boosting Image Restoration via Priors from Pre-Trained Models[C]:IEEE Computer Society, 2024, 2900-2909.
Authors:  Xu, Xiaogang;  Kong, Shu;  Hu, Tao;  Liu, Zhe;  Bao, Hujun
Favorite | TC[Scopus]:2 | Submit date:2024/11/05
Computer Vision  Shape  Computational Modeling  Noise Reduction  Training Data  Boosting  Data Models  Pre-trained Models  Image Restoration  Spatial-varying Enhancement  Channel-spatial Attention  
Federated Learning-Empowered AI-Generated Content in Wireless Networks Journal article
Huang Xumin, Li Peichun, Du Hongyang, Kang Jiawen, Niyato Dusit, Kim Dong In, Wu Yuan. Federated Learning-Empowered AI-Generated Content in Wireless Networks[J]. IEEE Network, 2024, 38(5), 304-313.
Authors:  Huang Xumin;  Li Peichun;  Du Hongyang;  Kang Jiawen;  Niyato Dusit; et al.
Favorite | TC[WOS]:8 TC[Scopus]:17  IF:6.8/8.5 | Submit date:2024/05/16
Adaptation Models  Aigc  Computational Modeling  Data Models  Deep Learning  Federated Learning  Generative Adversarial Networks  Stable Diffusion  Task Analysis  Training  Transformers  Wireless Networks  
Informative Nodes Mining for Class-Imbalanced Representation Learning Journal article
Zhou, Mengting, Gong, Zhiguo. Informative Nodes Mining for Class-Imbalanced Representation Learning[J]. IEEE Transactions on Computational Social Systems, 2024.
Authors:  Zhou, Mengting;  Gong, Zhiguo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:4.5/4.6 | Submit date:2024/05/16
Class Imbalanced Learning  Costs  Graph Neural Network (Gnn)  Graph Neural Networks  Node Classification  Representation Learning  Social Networking (Online)  Task Analysis  Training  Training Data  
A Gated Recurrent Generative Transfer Learning Network for Fault Diagnostics Considering Imbalanced Data and Variable Working Conditions Journal article
Li, Zhuorui, Ma, Jun, Wu, Jiande, Wong, Pak Kin, Wang, Xiaodong, Li, Xiang. A Gated Recurrent Generative Transfer Learning Network for Fault Diagnostics Considering Imbalanced Data and Variable Working Conditions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 1-12.
Authors:  Li, Zhuorui;  Ma, Jun;  Wu, Jiande;  Wong, Pak Kin;  Wang, Xiaodong; et al.
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:10.2/10.4 | Submit date:2024/05/16
Fault Diagnosis  Gated Recurrent Generative Transfer Learning Network (Grgtln)  “generation-transfer” CoTraining Training Strategy  Imbalances Data  Smooth Conditional Matrix  
GSB: Group superposition binarization for vision transformer with limited training samples Journal article
Gao, Tian, Xu, Cheng Zhong, Zhang, Le, Kong, Hui. GSB: Group superposition binarization for vision transformer with limited training samples[J]. Neural Networks, 2024, 172, 106133.
Authors:  Gao, Tian;  Xu, Cheng Zhong;  Zhang, Le;  Kong, Hui
Favorite | TC[WOS]:0 TC[Scopus]:1  IF:6.0/7.9 | Submit date:2024/05/02
Group Superposition Binarization  Insufficient Training Data  Self-attention  Vision Transformer (Vit)  
When Pre-Training Model Meets Smart Meter Data Applications: A Preliminary Trial of General Way Conference paper
Wang, Zhenyi, Zhang, Hongcai, Zhou, Baorong, Zhao, Wenmeng, Mao, Tian. When Pre-Training Model Meets Smart Meter Data Applications: A Preliminary Trial of General Way[C]:IEEE Computer Society, 2024, 203130.
Authors:  Wang, Zhenyi;  Zhang, Hongcai;  Zhou, Baorong;  Zhao, Wenmeng;  Mao, Tian
Favorite | TC[Scopus]:0 | Submit date:2024/11/05
Deep Learning  Load Forecasting  Load Profiling  Pre-training Model  Smart Meter Data  Transformer  
Out-of-Distribution Detection of Unknown False Data Injection Attack With Logit-Normalized Bayesian ResNet Journal article
Feng, Guangxu, Lao, Keng Weng, Chen, Ge. Out-of-Distribution Detection of Unknown False Data Injection Attack With Logit-Normalized Bayesian ResNet[J]. IEEE Transactions on Smart Grid, 2024.
Authors:  Feng, Guangxu;  Lao, Keng Weng;  Chen, Ge
Favorite | TC[Scopus]:0  IF:8.6/9.6 | Submit date:2024/07/04
Bayes Methods  Bayesian Neural Network  Current Measurement  Deep Learning  Epistemic Uncertainty  False Data Injection Attack  Neural Networks  Out-of-distribution Detection  Training  Uncertainty  Uncertainty Calibration  Vectors  
Locality-aware and Fault-tolerant Batching for Machine Learning on Distributed Datasets Journal article
Liu, Liu, Ding, Zhijun, Cheng, Dazhao, Zhou, Xiaobo. Locality-aware and Fault-tolerant Batching for Machine Learning on Distributed Datasets[J]. IEEE Transactions on Cloud Computing, 2024, 12(2), 370-387.
Authors:  Liu, Liu;  Ding, Zhijun;  Cheng, Dazhao;  Zhou, Xiaobo
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:5.3/4.6 | Submit date:2024/05/16
Adaptation Models  Byzantine Gradient  Computational Modeling  Data Models  Distributed Databases  Distributed Dataset  Graphics Processing Units  Load Management  Machine Learning Training  Straggler  Training