×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [2]
THE STATE KEY LA... [1]
Authors
CHENGZHONG XU [1]
Document Type
Journal article [2]
Date Issued
2022 [2]
Language
英語English [2]
Source Publication
INFORMATION SCIE... [1]
NEURAL COMPUTING... [1]
Indexed By
SCIE [2]
Funding Organization
Funding Project
Efficient Integr... [1]
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-2 of 2
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Completion and augmentation-based spatiotemporal deep learning approach for short-term metro origin-destination matrix prediction under limited observable data
Journal article
Jiexia Ye, Juanjuan Zhao, Furong Zheng, Chengzhong Xu. Completion and augmentation-based spatiotemporal deep learning approach for short-term metro origin-destination matrix prediction under limited observable data[J]. NEURAL COMPUTING & APPLICATIONS, 2022, 35(4), 3325 - 3341.
Authors:
Jiexia Ye
;
Juanjuan Zhao
;
Furong Zheng
;
Chengzhong Xu
Favorite
|
TC[WOS]:
10
TC[Scopus]:
13
IF:
4.5
/
4.7
|
Submit date:2023/01/30
Origin-destination Matrix Prediction
Destination Distribution Availability
Self-attention Mechanism
Temporal Convolution Network
Multi-mode dynamic residual graph convolution network for traffic flow prediction
Journal article
Huang, Xiaohui, Ye, Yuming, Ding, Weihua, Yang, Xiaofei, Xiong, Liyan. Multi-mode dynamic residual graph convolution network for traffic flow prediction[J]. INFORMATION SCIENCES, 2022, 609, 548-564.
Authors:
Huang, Xiaohui
;
Ye, Yuming
;
Ding, Weihua
;
Yang, Xiaofei
;
Xiong, Liyan
Favorite
|
TC[WOS]:
22
TC[Scopus]:
23
IF:
0
/
0
|
Submit date:2022/08/02
Graph Convolution Network
Multi-mode Fusion
Spatio-temporal Data
Traffic Flow Prediction