×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [4]
Faculty of Healt... [1]
Authors
LIU ZHI [4]
WANG LI [1]
Document Type
Journal article [6]
Date Issued
2024 [2]
2020 [1]
2018 [3]
Language
英語English [6]
Source Publication
Econometrics Jou... [1]
Metrika [1]
NORTH AMERICAN J... [1]
STOCHASTIC PROCE... [1]
Statistics and P... [1]
Stochastic Proce... [1]
More...
Indexed By
SCIE [4]
SSCI [4]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-6 of 6
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Correcting spot power variation estimator via Edgeworth expansion
Journal article
He, Lidan, Liu, Qiang, Liu, Zhi, Bucci, Andrea. Correcting spot power variation estimator via Edgeworth expansion[J]. Metrika, 2024, 87(8), 921–945.
Authors:
He, Lidan
;
Liu, Qiang
;
Liu, Zhi
;
Bucci, Andrea
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
0.9
/
1.0
|
Submit date:2024/02/22
Confidence Interval
Edgeworth Expansion
High-frequency Data
Spot Volatility
Estimating spot volatility under infinite variation jumps with dependent market microstructure noise
Journal article
Liu, Qiang, Liu, Zhi. Estimating spot volatility under infinite variation jumps with dependent market microstructure noise[J]. Econometrics Journal, 2024, 27(2), 278-298.
Authors:
Liu, Qiang
;
Liu, Zhi
Favorite
|
TC[WOS]:
0
TC[Scopus]:
0
IF:
2.9
/
4.8
|
Submit date:2024/07/04
Dependent Market Microstructure Noise
Empirical Characteristic Function
High-frequency Data
Jump Activity
Jumps
Kernel Smoothing
Pre-averaging
Spot Volatility
Edgeworth corrections for spot volatility estimator
Journal article
He,Lidan, Liu,Qiang, Liu,Zhi. Edgeworth corrections for spot volatility estimator[J]. Statistics and Probability Letters, 2020, 164.
Authors:
He,Lidan
;
Liu,Qiang
;
Liu,Zhi
Favorite
|
TC[WOS]:
2
TC[Scopus]:
2
IF:
0.9
/
0.8
|
Submit date:2021/03/11
Central Limit Theorem
Confidence Interval
Edgeworth Expansion
High Frequency Data
Spot Volatility
Estimating spot volatility in the presence of infinite variation jumps
Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi. Estimating spot volatility in the presence of infinite variation jumps[J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128(6), 1958-1987.
Authors:
Liu, Qiang
;
Liu, Yiqi
;
Liu, Zhi
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
IF:
1.1
/
1.4
|
Submit date:2018/10/30
Semi-martingale
High Frequency Data
Spot Volatility
Kernel Estimate
Central Limit Theorem
Efficient estimation of spot volatility with presence of infinite variation jumps
Journal article
Liu, Q., Liu, Y., Liu, Z.. Efficient estimation of spot volatility with presence of infinite variation jumps[J]. Stochastic Processes and their Applications, 2018, 1958-1987.
Authors:
Liu, Q.
;
Liu, Y.
;
Liu, Z.
Favorite
|
TC[WOS]:
11
TC[Scopus]:
11
IF:
1.1
/
1.4
|
Submit date:2022/07/27
Semi-martingale
High Frequency Data
Spot Volatility
Kernel Estimate
Central Limit Theorem
Estimation of spot volatility with superposed noisy data
Journal article
Liu, Qiang, Liu, Yiqi, Liu, Zhi, Wang, Li. Estimation of spot volatility with superposed noisy data[J]. NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 44, 62-79.
Authors:
Liu, Qiang
;
Liu, Yiqi
;
Liu, Zhi
;
Wang, Li
Favorite
|
TC[WOS]:
4
TC[Scopus]:
3
IF:
3.8
/
3.4
|
Submit date:2018/10/30
High Frequency Financial Data
Spot Volatility
Range-based Estimation
Kernel Estimate
Multiple Records
Microstructure Noise
Central Limit Theorem