UM

Browse/Search Results:  1-10 of 19 Help

Selected(0)Clear Items/Page:    Sort:
Multi-task SE-Network for Image Splicing Localization Journal article
Zhang, Yulan, Zhu, Guopu, Wu, Ligang, Kwong, Sam, Zhang, Hongli, Zhou, Yicong. Multi-task SE-Network for Image Splicing Localization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(7), 4828--4840.
Authors:  Zhang, Yulan;  Zhu, Guopu;  Wu, Ligang;  Kwong, Sam;  Zhang, Hongli; et al.
Favorite | TC[WOS]:34 TC[Scopus]:43  IF:8.3/7.1 | Submit date:2022/05/13
Image Forensics  Image Splicing Localization  Multi-task Learning  Squeeze And Excitation Attention Module  Low-level Feature Fusion  
Alternative splicing in mesenchymal stem cell differentiation Review article
2020
Authors:  Jung Woo Park;  Siyi Fu;  Borong Huang;  Ren-He Xu
Adobe PDF | Favorite | TC[WOS]:25 TC[Scopus]:29  IF:4.0/4.9 | Submit date:2021/03/04
Adipogenic  Alternative Splicing  Chondrogenic  Esc Differentiation  Mesenchymal Stem Cells  Msc Differentiation  Neural Differentiation  Osteogenic  Rna-binding Proteins  
Exposing splicing forgery in realistic scenes using deep fusion network Journal article
Liu,Bo, Pun,Chi Man. Exposing splicing forgery in realistic scenes using deep fusion network[J]. Information Sciences, 2020, 526, 133-150.
Authors:  Liu,Bo;  Pun,Chi Man
Favorite | TC[WOS]:32 TC[Scopus]:38  IF:0/0 | Submit date:2021/03/11
Deep Learning  Deep Neural Network  Forgery Detection  Fusion  Image Forensics  Jpeg Compression  Noise Estimation  Splicing Forgery  
Locating splicing forgery by adaptive-SVD noise estimation and vicinity noise descriptor Journal article
Liu,Bo, Pun,Chi Man. Locating splicing forgery by adaptive-SVD noise estimation and vicinity noise descriptor[J]. NEUROCOMPUTING, 2020, 387, 172-187.
Authors:  Liu,Bo;  Pun,Chi Man
Favorite | TC[WOS]:15 TC[Scopus]:18  IF:5.5/5.5 | Submit date:2021/03/11
Noise Estimation  Adaptive Svd  Splicing Forgery  Image Forensics  
New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes Journal article
Nikita I. Ershov, Viatcheslav A. Mordvinov, Egor B. Prokhortchouk, Mariya Y. Pakharukova, Konstantin V. Gunbin, Kirill Ustyantsev, Mikhail A. Genaev, Alexander G. Blinov, Alexander Mazur, Eugenia Boulygina, Svetlana Tsygankova, Ekaterina Khrameeva, Nikolay Chekanov, Guangyi Fan, An Xiao, He Zhang, Xun Xu, Huanming Yang, Victor Solovyev, Simon Ming-Yuen Lee, Xin Liu, Dmitry A. Afonnikov, Konstantin G. Skryabin. New insights from Opisthorchis felineus genome: update on genomics of the epidemiologically important liver flukes[J]. BMC GENOMICS, 2019.
Authors:  Nikita I. Ershov;  Viatcheslav A. Mordvinov;  Egor B. Prokhortchouk;  Mariya Y. Pakharukova;  Konstantin V. Gunbin; et al.
Favorite | TC[WOS]:25 TC[Scopus]:33  IF:3.5/4.1 | Submit date:2020/01/16
Opisthorchiidae  Opisthorchis Felineus  Genome  Trans-splicing  Microintrons  Liver Flukes  Transcriptome  Metacercariae  
Re-analysis of the coral Acropora digitifera transcriptome reveals a complex lncRNAs-mRNAs interaction network implicated in Symbiodinium infection Journal article
Huang C., Leng D., Sun S., Zhang X.D.. Re-analysis of the coral Acropora digitifera transcriptome reveals a complex lncRNAs-mRNAs interaction network implicated in Symbiodinium infection[J]. BMC Genomics, 2019, 20(1).
Authors:  Huang C.;  Leng D.;  Sun S.;  Zhang X.D.
Adobe PDF | Favorite | TC[WOS]:8 TC[Scopus]:9  IF:3.5/4.1 | Submit date:2021/03/03
Acropora Digitifera  Alternative Splicing  Deep Rna-sequencing  Long Non-coding Rnas  Symbiodinium  Transcriptome  
Image splicing localization via semi-global network and fully connected conditional random fields Conference paper
Cun, Xiaodong, Pun, Chi Man. Image splicing localization via semi-global network and fully connected conditional random fields[C], 2018, 252-266.
Authors:  Cun, Xiaodong;  Pun, Chi Man
Favorite | TC[WOS]:10 TC[Scopus]:9 | Submit date:2022/05/23
Image Forgery Localization  Image Splicing Localization  Multimedia Security  
Deep Fusion Network for Splicing Forgery Localization Conference paper
Liu, Bo, Pun, Chi-Man. Deep Fusion Network for Splicing Forgery Localization[C], 2018, 237-251.
Authors:  Liu, Bo;  Pun, Chi-Man
Favorite | TC[WOS]:4 TC[Scopus]:6 | Submit date:2019/05/24
Image Forensics  Splicing Forgery Detection  Forgery Localization  Deep Convolutional Network  Fusion Network  
Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients Journal article
Kahles A., Lehmann K.-V., Toussaint N.C., Huser M., Stark S.G., Sachsenberg T., Stegle O., Kohlbacher O., Sander C., Caesar-Johnson S.J., Demchok J.A., Felau I., Kasapi M., Ferguson M.L., Hutter C.M., Sofia H.J., Tarnuzzer R., Wang Z., Yang L., Zenklusen J.C., Zhang J.J., Chudamani S., Liu J., Lolla L., Naresh R., Pihl T., Sun Q., Wan Y., Wu Y., Cho J., DeFreitas T., Frazer S., Gehlenborg N., Getz G., Heiman D.I., Kim J., Lawrence M.S., Lin P., Meier S., Noble M.S., Saksena G., Voet D., Zhang H., Bernard B., Chambwe N., Dhankani V., Knijnenburg T., Kramer R., Leinonen K., Liu Y., Miller M., Reynolds S., Shmulevich I., Thorsson V., Zhang W., Akbani R., Broom B.M., Hegde A.M., Ju Z., Kanchi R.S., Korkut A., Li J., Liang H., Ling S., Liu W., Lu Y., Mills G.B., Ng K.-S., Rao A., Ryan M., Wang J., Weinstein J.N., Zhang J., Abeshouse A., Armenia J., Chakravarty D., Chatila W.K., de Bruijn I., Gao J., Gross B.E., Heins Z.J., Kundra R., La K., Ladanyi M., Luna A., Nissan M.G., Ochoa A., Phillips S.M., Reznik E., Sanchez-Vega F., Sander C., Schultz N., Sheridan R., Sumer S.O., Sun Y., Taylor B.S., Wang J., Zhang H., Anur P., Peto M., Spellman P., Benz C., Stuart J.M., Wong C.K., Yau C., Hayes D.N., Parker J.S., Wilkerson M.D., Ally A., Balasundaram M., Bowlby R., Brooks D., Carlsen R., Chuah E., Dhalla N., Holt R., Jones S.J.M., Kasaian K., Lee D., Ma Y., Marra M.A., Mayo M., Moore R.A., Mungall A.J., Mungall K., Robertson A.G., Sadeghi S., Schein J.E., Sipahimalani P., Tam A., Thiessen N., Tse K., Wong T., Berger A.C., Beroukhim R., Cherniack A.D., Cibulskis C., Gabriel S.B., Gao G.F., Ha G., Meyerson M., Schumacher S.E., Shih J., Kucherlapati M.H., Kucherlapati R.S., Baylin S., Cope L., Danilova L., Bootwalla M.S., Lai P.H., Maglinte D.T., Van Den Berg D.J., Weisenberger D.J., Auman J.T., Balu S., Bodenheimer T., Fan C., Hoadley K.A., Hoyle A.P., Jefferys S.R., Jones C.D., Meng S., Mieczkowski P.A., Mose L.E., Perou A.H., Perou C.M., Roach J., Shi Y., Simons J.V., Skelly T., Soloway M.G., Tan D., Veluvolu U., Fan H., Hinoue T., Laird P.W., Shen H., Zhou W., Bellair M., Chang K., Covington K., Creighton C.J., Dinh H., Doddapaneni H., Donehower L.A., Drummond J., Gibbs R.A., Glenn R., Hale W., Han Y., Hu J., Korchina V., Lee S., Lewis L., Li W., Liu X., Morgan M., Morton D., Muzny D., Santibanez J., Sheth M., Shinbrot E., Wang L., Wang M., Wheeler D.A., Xi L., Zhao F., Hess J., Appelbaum E.L., Bailey M., Cordes M.G., Ding L., Fronick C.C., Fulton L.A., Fulton R.S., Kandoth C., Mardis E.R., McLellan M.D., Miller C.A., Schmidt H.K., Wilson R.K., Crain D., Curley E., Gardner J., Lau K., Mallery D., Morris S., Paulauskis J., Penny R., Shelton C., Shelton T., Sherman M., Thompson E., Yena P., Bowen J., Gastier-Foster J.M., Gerken M., Leraas K.M., Lichtenberg T.M., Ramirez N.C., Wise L., Zmuda E., Corcoran N., Costello T., Hovens C., Carvalho A.L., de Carvalho A.C., Fregnani J.H., Longatto-Filho A., Reis R.M., Scapulatempo-Neto C., Silveira H.C.S., Vidal D.O., Burnette A., Eschbacher J., Hermes B., Noss A., Singh R., Anderson M.L., Castro P.D., Ittmann M., Huntsman D., Kohl B., Le X., Thorp R., Andry C., Duffy E.R., Lyadov V., Paklina O., Setdikova G., Shabunin A., Tavobilov M., McPherson C., Warnick R., Berkowitz R., Cramer D., Feltmate C., Horowitz N., Kibel A., Muto M., Raut C.P., Malykh A., Barnholtz-Sloan J.S., Barrett W., Devine K., Fulop J., Ostrom Q.T., Shimmel K., Wolinsky Y., Sloan A.E., De Rose A., Giuliante F., Goodman M., Karlan B.Y., Hagedorn C.H., Eckman J., Harr J., Myers J., Tucker K., Zach L.A., Deyarmin B., Hu H., Kvecher L., Larson C., Mural R.J., Somiari S., Vicha A., Zelinka T., Bennett J., Iacocca M., Rabeno B., Swanson P., Latour M., Lacombe L., Tetu B., Bergeron A., McGraw M., Staugaitis S.M., Chabot J., Hibshoosh H., Sepulveda A., Su T., Wang T., Potapova O., Voronina O., Desjardins L., Mariani O., Roman-Roman S., Sastre X., Stern M.-H., Cheng F., Signoretti S., Berchuck A., Bigner D., Lipp E., Marks J., McCall S., McLendon R., Secord A., Sharp A., Behera M., Brat D.J., Chen A., Delman K., Force S., Khuri F., Magliocca K., Maithel S., Olson J.J., Owonikoko T., Pickens A., Ramalingam S., Shin D.M., Sica G., Van Meir E.G., Zhang H., Eijckenboom W., Gillis A., Korpershoek E., Looijenga L., Oosterhuis W., Stoop H., van Kessel K.E., Zwarthoff E.C., Calatozzolo C., Cuppini L., Cuzzubbo S., DiMeco F., Finocchiaro G., Mattei L., Perin A., Pollo B., Chen C., Houck J., Lohavanichbutr P., Hartmann A., Stoehr C., Stoehr R., Taubert H., Wach S., Wullich B., Kycler W., Murawa D., Wiznerowicz M., Chung K., Edenfield W.J., Martin J., Baudin E., Bubley G., Bueno R., De Rienzo A., Richards W.G., Kalkanis S., Mikkelsen T., Noushmehr H., Scarpace L., Girard N., Aymerich M., Campo E., Gine E., Guillermo A.L., Van Bang N., Hanh P.T., Phu B.D., Tang Y., Colman H., Evason K., Dottino P.R., Martignetti J.A., Gabra H., Juhl H., Akeredolu T., Stepa S., Hoon D., Ahn K., Kang K.J., Beuschlein F., Breggia A., Birrer M., Bell D., Borad M., Bryce A.H., Castle E., Chandan V., Cheville J., Copland J.A., Farnell M., Flotte T., Giama N., Ho T., Kendrick M., Kocher J.-P., Kopp K., Moser C., Nagorney D., O'Brien D., O'Neill B.P., Patel T., Petersen G., Que F., Rivera M., Roberts L., Smallridge R., Smyrk T., Stanton M., Thompson R.H., Torbenson M., Yang J.D., Zhang L., Brimo F., Ajani J.A., Angulo Gonzalez A.M., Behrens C., Bondaruk J., Broaddus R., Czerniak B., Esmaeli B., Fujimoto J., Gershenwald J., Guo C., Lazar A.J., Logothetis C., Meric-Bernstam F., Moran C., Ramondetta L., Rice D., Sood A., Tamboli P., Thompson T., Troncoso P., Tsao A., Wistuba I., Carter C., Haydu L., Hersey P., Jakrot V., Kakavand H., Kefford R., Lee K., Long G., Mann G., Quinn M., Saw R., Scolyer R., Shannon K., Spillane A., Stretch J., Synott M., Thompson J., Wilmott J., Al-Ahmadie H., Chan T.A., Ghossein R., Gopalan A., Levine D.A., Reuter V., Singer S., Singh B., Tien N.V., Broudy T., Mirsaidi C., Nair P., Drwiega P., Miller J., Smith J., Zaren H., Park J.-W., Hung N.P., Kebebew E., Linehan W.M., Metwalli A.R., Pacak K., Pinto P.A., Schiffman M., Schmidt L.S., Vocke C.D., Wentzensen N., Worrell R., Yang H., Moncrieff M., Goparaju C., Melamed J., Pass H., Botnariuc N., Caraman I., Cernat M., Chemencedji I., Clipca A., Doruc S., Gorincioi G., Mura S., Pirtac M., Stancul I., Tcaciuc D., Albert M., Alexopoulou I., Arnaout A., Bartlett J., Engel J., Gilbert S., Parfitt J., Sekhon H., Thomas G., Rassl D.M., Rintoul R.C., Bifulco C., Tamakawa R., Urba W., Hayward N., Timmers H., Antenucci A., Facciolo F., Grazi G., Marino M., Merola R., de Krijger R., Gimenez-Roqueplo A.-P., Piche A., Chevalier S., McKercher G., Birsoy K., Barnett G., Brewer C., Farver C., Naska T., Pennell N.A., Raymond D., Schilero C., Smolenski K., Williams F., Morrison C., Borgia J.A., Liptay M.J., Pool M., Seder C.W., Junker K., Omberg L., Dinkin M., Manikhas G., Alvaro D., Bragazzi M.C., Cardinale V., Carpino G., Gaudio E., Chesla D., Cottingham S., Dubina M., Moiseenko F., Dhanasekaran R., Becker K.-F., Janssen K.-P., Slotta-Huspenina J., Abdel-Rahman M.H., Aziz D., Bell S., Cebulla C.M., Davis A., Duell R., Elder J.B., Hilty J., Kumar B., Lang J., Lehman N.L., Mandt R., Nguyen P., Pilarski R., Rai K., Schoenfield L., Senecal K., Wakely P., Hansen P., Lechan R., Powers J., Tischler A., Grizzle W.E., Sexton K.C., Kastl A., Henderson J., Porten S., Waldmann J., Fassnacht M., Asa S.L., Schadendorf D., Couce M., Graefen M., Huland H., Sauter G., Schlomm T., Simon R., Tennstedt P., Olabode O., Nelson M., Bathe O., Carroll P.R., Chan J.M., Disaia P., Glenn P., Kelley R.K., Landen C.N., Phillips J., Prados M., Simko J., Smith-McCune K., VandenBerg S., Roggin K., Fehrenbach A., Kendler A., Sifri S., Steele R., Jimeno A., Carey F., Forgie I., Mannelli M., Carney M., Hernandez B., Campos B., Herold-Mende C., Jungk C., Unterberg A., von Deimling A., Bossler A., Galbraith J., Jacobus L., Knudson M., Knutson T., Ma D., Milhem M., Sigmund R., Godwin A.K., Madan R., Rosenthal H.G., Adebamowo C., Adebamowo S.N., Boussioutas A., Beer D., Giordano T., Mes-Masson A.-M., Saad F., Bocklage T., Landrum L., Mannel R., Moore K., Moxley K., Postier R., Walker J., Zuna R., Feldman M., Valdivieso F., Dhir R., Luketich J., Mora Pinero E.M., Quintero-Aguilo M., Carlotti C.G., Dos Santos J.S., Kemp R., Sankarankuty A., Tirapelli D., Catto J., Agnew K., Swisher E., Creaney J., Robinson B., Shelley C.S., Godwin E.M., Kendall S., Shipman C., Bradford C., Carey T., Haddad A., Moyer J., Peterson L., Prince M., Rozek L., Wolf G., Bowman R., Fong K.M., Yang I., Korst R., Rathmell W.K., Fantacone-Campbell J.L., Hooke J.A., Kovatich A.J., Shriver C.D., DiPersio J., Drake B., Govindan R., Heath S., Ley T., Van Tine B., Westervelt P., Rubin M.A., Lee J.I., Aredes N.D., Mariamidze A., Ratsch G.. Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients[J]. Cancer Cell, 2018, 34(2), 211-224.e6.
Authors:  Kahles A.;  Lehmann K.-V.;  Toussaint N.C.;  Huser M.;  Stark S.G.; et al.
Favorite | TC[WOS]:561 TC[Scopus]:580 | Submit date:2019/01/16
Alternative Splicing  Cancer  Cptac  Exome  Gtex  Immunoediting  Immunotherapy  Ms Proteomics  Neoantigens  Rna-seq  Splicing Qtl  Tcga  Tcga Pan-cancer Atlas  Tumor-specific Splicing  
Locating splicing forgery by fully convolutional networks and conditional random field Journal article
Liu, Bo, Pun, Chi-Man. Locating splicing forgery by fully convolutional networks and conditional random field[J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 66, 103-112.
Authors:  Liu, Bo;  Pun, Chi-Man
Favorite | TC[WOS]:31 TC[Scopus]:53  IF:3.4/3.3 | Submit date:2018/10/30
Splicing Forgery  Deep Neural Network  Fully Convolutional Network  Conditional Random Field