UM

Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation Journal article
Liu, Qian, Telezhkin, Vsevolod, Jiang, Wenkai, Gu, Yu, Wang, Yan, Hong, Wei, Tian, Weiming, Yarova, Polina, Zhang, Gaofeng, Lee, Simon Ming yuen, Zhang, Peng, Zhao, Min, Allen, Nicholas D., Hirsch, Emilio, Penninger, Josef, Song, Bing. Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation[J]. Cell and Bioscience, 2023, 13(1).
Authors:  Liu, Qian;  Telezhkin, Vsevolod;  Jiang, Wenkai;  Gu, Yu;  Wang, Yan; et al.
Favorite | TC[WOS]:16 TC[Scopus]:20  IF:6.1/7.0 | Submit date:2023/02/28
Neural Stem Cells  Electric Field Stimulation  Neuronal Differentiation  Pi3k/akt/gsk-3β/β-catenin  Spinal Cord Injury  
Carrier-Free Nanodrug Based on Co-Assembly of Methylprednisolone Dimer and Rutin for Combined Treatment of Spinal Cord Injury Journal article
Wang,Hao, Lin,Feng, Wu,Yi, Guo,Wei, Chen,Xuesi, Xiao,Chunsheng, Chen,Meiwan. Carrier-Free Nanodrug Based on Co-Assembly of Methylprednisolone Dimer and Rutin for Combined Treatment of Spinal Cord Injury[J]. ACS Nano, 2023, 17(13), 12176-12187.
Authors:  Wang,Hao;  Lin,Feng;  Wu,Yi;  Guo,Wei;  Chen,Xuesi; et al.
Favorite | TC[WOS]:26 TC[Scopus]:28  IF:15.8/16.2 | Submit date:2023/08/03
Anti-inflammation  Antioxidative  Carrier-free Nanodrugs  Neuroprotection  Spinal Cord Injury  
Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis Journal article
Zhou, Wenshu, Silva, Marta, Feng, Chun, Zhao, Shumei, Liu, Linlin, Li, Shuai, Zhong, Jingmei, Zheng, Wenhua. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis[J]. Stem Cell Research and Therapy, 2021, 12(1), 174.
Authors:  Zhou, Wenshu;  Silva, Marta;  Feng, Chun;  Zhao, Shumei;  Liu, Linlin; et al.
Favorite | TC[WOS]:60 TC[Scopus]:58  IF:7.1/7.9 | Submit date:2021/12/09
Autonomic Function  Mesenchymal Stem Cell-derived Exosomes  Motor Function  Neurogenesis  Spinal Cord Injury  
Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture Journal article
Liu X., Chu T.-H., Su H., Guo A., Wu W.. Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture[J]. Neurological Sciences, 2014, 35(3), 415-419.
Authors:  Liu X.;  Chu T.-H.;  Su H.;  Guo A.;  Wu W.
Favorite | TC[WOS]:8 TC[Scopus]:8 | Submit date:2018/12/28
Microglia  Neural Progenitor Cells  Neuronal Differentiation  Spinal Cord Injury  
Induction of phosphorylated c-Jun in neonatal spinal motoneurons after axonal injury is coincident with both motoneuron death and regeneration Journal article
Yuan Q., Su H., Guo J., Wu W., Lin Z.-X.. Induction of phosphorylated c-Jun in neonatal spinal motoneurons after axonal injury is coincident with both motoneuron death and regeneration[J]. Journal of Anatomy, 2014, 224(5), 575-582.
Authors:  Yuan Q.;  Su H.;  Guo J.;  Wu W.;  Lin Z.-X.
Favorite | TC[WOS]:5 TC[Scopus]:5 | Submit date:2018/12/28
Axonal Injury  Motoneuron  Phosphorylated C-jun  Regeneration  Spinal Cord  
Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats Journal article
Yuan Q., Su H., Chiu K., Wu W., Lin Z.-X.. Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats[J]. Neuroscience Bulletin, 2013, 29(4), 509-516.
Authors:  Yuan Q.;  Su H.;  Chiu K.;  Wu W.;  Lin Z.-X.
Favorite | TC[WOS]:16 TC[Scopus]:17 | Submit date:2018/12/28
Functional Recovery  Neonatal  Rat  Regeneration  Spinal Cord Injury  
Combination of activated Schwann cells with bone mesenchymal stem cells: The best cell strategy for repair after spinal cord injury in rats Journal article
Ban D.-X., Ning G.-Z., Feng S.-Q., Wang Y., Zhou X.-H., Liu Y., Chen J.-T.. Combination of activated Schwann cells with bone mesenchymal stem cells: The best cell strategy for repair after spinal cord injury in rats[J]. Regenerative Medicine, 2011, 6(6), 707-720.
Authors:  Ban D.-X.;  Ning G.-Z.;  Feng S.-Q.;  Wang Y.;  Zhou X.-H.; et al.
Favorite | TC[WOS]:47 TC[Scopus]:56 | Submit date:2019/01/16
Activated Schwann Cells  Basso  Beattie  Bone Mesenchymal Stem Cells  Bresnahan Score  Corticospinal Tract  Footprint Analysis  Spinal Cord Injury  
Induction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury Journal article
Qiuju Yuan, Bing Hu, Yin Wu, Tak-Ho Chu, Huanxin Su, Weiming Zhang, Kwok-Fai So, Zhixiu Lin, Wutian Wu. Induction of c-Jun phosphorylation in spinal motoneurons in neonatal and adult rats following axonal injury[J]. BRAIN RESEARCH, 2010, 1320, 7-15.
Authors:  Qiuju Yuan;  Bing Hu;  Yin Wu;  Tak-Ho Chu;  Huanxin Su; et al.
Favorite | TC[WOS]:18 TC[Scopus]:18  IF:2.7/2.9 | Submit date:2020/04/22
Motoneuron  Neuronal Death  Regeneration  Axonal Injury  Spinal Cord