UM

Browse/Search Results:  1-10 of 16 Help

Selected(0)Clear Items/Page:    Sort:
Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation Journal article
Liu, Qian, Telezhkin, Vsevolod, Jiang, Wenkai, Gu, Yu, Wang, Yan, Hong, Wei, Tian, Weiming, Yarova, Polina, Zhang, Gaofeng, Lee, Simon Ming yuen, Zhang, Peng, Zhao, Min, Allen, Nicholas D., Hirsch, Emilio, Penninger, Josef, Song, Bing. Electric field stimulation boosts neuronal differentiation of neural stem cells for spinal cord injury treatment via PI3K/Akt/GSK-3β/β-catenin activation[J]. Cell and Bioscience, 2023, 13(1).
Authors:  Liu, Qian;  Telezhkin, Vsevolod;  Jiang, Wenkai;  Gu, Yu;  Wang, Yan; et al.
Favorite | TC[WOS]:16 TC[Scopus]:20  IF:6.1/7.0 | Submit date:2023/02/28
Neural Stem Cells  Electric Field Stimulation  Neuronal Differentiation  Pi3k/akt/gsk-3β/β-catenin  Spinal Cord Injury  
Carrier-Free Nanodrug Based on Co-Assembly of Methylprednisolone Dimer and Rutin for Combined Treatment of Spinal Cord Injury Journal article
Wang,Hao, Lin,Feng, Wu,Yi, Guo,Wei, Chen,Xuesi, Xiao,Chunsheng, Chen,Meiwan. Carrier-Free Nanodrug Based on Co-Assembly of Methylprednisolone Dimer and Rutin for Combined Treatment of Spinal Cord Injury[J]. ACS Nano, 2023, 17(13), 12176-12187.
Authors:  Wang,Hao;  Lin,Feng;  Wu,Yi;  Guo,Wei;  Chen,Xuesi; et al.
Favorite | TC[WOS]:26 TC[Scopus]:28  IF:15.8/16.2 | Submit date:2023/08/03
Anti-inflammation  Antioxidative  Carrier-free Nanodrugs  Neuroprotection  Spinal Cord Injury  
Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis Journal article
Zhou, Wenshu, Silva, Marta, Feng, Chun, Zhao, Shumei, Liu, Linlin, Li, Shuai, Zhong, Jingmei, Zheng, Wenhua. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis[J]. Stem Cell Research and Therapy, 2021, 12(1), 174.
Authors:  Zhou, Wenshu;  Silva, Marta;  Feng, Chun;  Zhao, Shumei;  Liu, Linlin; et al.
Favorite | TC[WOS]:60 TC[Scopus]:58  IF:7.1/7.9 | Submit date:2021/12/09
Autonomic Function  Mesenchymal Stem Cell-derived Exosomes  Motor Function  Neurogenesis  Spinal Cord Injury  
Brachial Plexus Avulsion: A Model for Axonal Regeneration Study Book chapter
出自: Neural Regeneration:Elsevier Inc., 2015, 页码:101-115
Authors:  Su H.;  Yuan Q.;  Zhou L.;  Wu W.
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2018/12/28
Brachial Plexus  Cell Therapy  Degeneration  Motoneurons  Muscle Atrophy  Root Avulsion  Spinal Cord  Stem Cells  Ventral Root Reimplantation  
Brachial Plexus Avulsion: A Model for Axonal Regeneration Study Book chapter
出自: Neural Regeneration:Elsevier Inc., 2015, 页码:101-115
Authors:  Su,Huanxing;  Yuan,Qiuju;  Zhou,Lihua;  Wu,Wutian
Favorite | TC[WOS]:2 TC[Scopus]:2 | Submit date:2021/03/01
Brachial Plexus  Cell Therapy  Degeneration  Motoneurons  Muscle Atrophy  Root Avulsion  Spinal Cord  Stem Cells  Ventral Root Reimplantation  
Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture Journal article
Liu X., Chu T.-H., Su H., Guo A., Wu W.. Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture[J]. Neurological Sciences, 2014, 35(3), 415-419.
Authors:  Liu X.;  Chu T.-H.;  Su H.;  Guo A.;  Wu W.
Favorite | TC[WOS]:8 TC[Scopus]:8 | Submit date:2018/12/28
Microglia  Neural Progenitor Cells  Neuronal Differentiation  Spinal Cord Injury  
Induction of phosphorylated c-Jun in neonatal spinal motoneurons after axonal injury is coincident with both motoneuron death and regeneration Journal article
Yuan Q., Su H., Guo J., Wu W., Lin Z.-X.. Induction of phosphorylated c-Jun in neonatal spinal motoneurons after axonal injury is coincident with both motoneuron death and regeneration[J]. Journal of Anatomy, 2014, 224(5), 575-582.
Authors:  Yuan Q.;  Su H.;  Guo J.;  Wu W.;  Lin Z.-X.
Favorite | TC[WOS]:5 TC[Scopus]:5 | Submit date:2018/12/28
Axonal Injury  Motoneuron  Phosphorylated C-jun  Regeneration  Spinal Cord  
Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats Journal article
Yuan Q., Su H., Chiu K., Wu W., Lin Z.-X.. Contrasting neuropathology and functional recovery after spinal cord injury in developing and adult rats[J]. Neuroscience Bulletin, 2013, 29(4), 509-516.
Authors:  Yuan Q.;  Su H.;  Chiu K.;  Wu W.;  Lin Z.-X.
Favorite | TC[WOS]:16 TC[Scopus]:17 | Submit date:2018/12/28
Functional Recovery  Neonatal  Rat  Regeneration  Spinal Cord Injury  
Existence of different types of senile plaques between brain and spinal cord of TgCRND8 mice Journal article
Yuan Q., Su H., Zhang Y., Chau W.H., Ng C.T., Wu W., Lin Z.-X.. Existence of different types of senile plaques between brain and spinal cord of TgCRND8 mice[J]. Neurochemistry International, 2013, 62(3), 211-220.
Authors:  Yuan Q.;  Su H.;  Zhang Y.;  Chau W.H.;  Ng C.T.; et al.
Favorite | TC[WOS]:8 TC[Scopus]:7  IF:4.4/3.8 | Submit date:2018/12/28
Alzheimer's Disease  Senile Plaques  Spinal Cord And Glial Reaction  Tgcrnd8 Mice  
Amyloid pathology in spinal cord of the transgenic alzheimer's disease mice is correlated to the corticospinal tract pathway Journal article
Yuan, Qiuju, Su, Huanxing, Zhang, Yalun, Chau, Wing Hin, Ng, Cheung Toa, Song, You-Qiang, Huang, Jian-Dong, Wu, Wutian, Lin, Zhi-Xiu. Amyloid pathology in spinal cord of the transgenic alzheimer's disease mice is correlated to the corticospinal tract pathway[J]. Journal of Alzheimer's Disease, 2013, 35(4), 675-685.
Authors:  Yuan, Qiuju;  Su, Huanxing;  Zhang, Yalun;  Chau, Wing Hin;  Ng, Cheung Toa; et al.
Favorite | TC[WOS]:22 TC[Scopus]:20  IF:3.4/4.2 | Submit date:2018/12/28
Amyloid-β Formation  Axonal Transport  Spinal Cord  Tgcrnd8 Mice