UM

Browse/Search Results:  1-10 of 33 Help

Selected(0)Clear Items/Page:    Sort:
Bayesian sparse grid (BSG) approach for information salvage in reliability assessment of deteriorating structures Journal article
Li, Long, Xu, Jun, Kuok, Sin Chi. Bayesian sparse grid (BSG) approach for information salvage in reliability assessment of deteriorating structures[J]. Reliability Engineering and System Safety, 2024, 251, 110329.
Authors:  Li, Long;  Xu, Jun;  Kuok, Sin Chi
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:9.4/8.1 | Submit date:2024/08/05
Bayesian Inference  Deteriorating Structures  Information Salvage  Sparse Grid  Time-varying Reliability  
Non-parametric generation of multivariate cross-correlated random fields directly from sparse measurements using Bayesian compressive sensing and Markov chain Monte Carlo simulation Journal article
Li, Peiping, Wang, Yu, Guan, Zheng. Non-parametric generation of multivariate cross-correlated random fields directly from sparse measurements using Bayesian compressive sensing and Markov chain Monte Carlo simulation[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(12), 4607-4628.
Authors:  Li, Peiping;  Wang, Yu;  Guan, Zheng
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.9/3.6 | Submit date:2024/01/02
Bayesian Compressive Sensing  Cross-correlated Random Field Samples  Non-parametric Method  Reliability Analysis  Sparse Measurements  
Clustered Sparse Bayesian Learning Based Channel Estimation for Millimeter-Wave Massive MIMO Systems Journal article
Wu, Xianda, Ma, Shaodan, Yang, Xi, Yang, Guanghua. Clustered Sparse Bayesian Learning Based Channel Estimation for Millimeter-Wave Massive MIMO Systems[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12), 12749-12764.
Authors:  Wu, Xianda;  Ma, Shaodan;  Yang, Xi;  Yang, Guanghua
Favorite | TC[WOS]:6 TC[Scopus]:8  IF:6.1/6.5 | Submit date:2023/01/30
Massive Mimo  Mm Wave  Channel Estimation  Sparse Bayesian Learning  
Graph-based sparse bayesian broad learning system for semi-supervised learning Journal article
Xu, Lili, Philip Chen, C. L., Han, Ruizhi. Graph-based sparse bayesian broad learning system for semi-supervised learning[J]. INFORMATION SCIENCES, 2022, 597, 193-210.
Authors:  Xu, Lili;  Philip Chen, C. L.;  Han, Ruizhi
Favorite | TC[WOS]:13 TC[Scopus]:13  IF:0/0 | Submit date:2022/05/13
Classification  Fast Marginal Likelihood Maximization  Graph-based Model  Manifold Regularization  Semi-supervised Learning  Sparse Bayesian Broad Learning System  
Hybrid Channel Estimation for UPA-Assisted Millimeter-Wave Massive MIMO IoT Systems Journal article
Wu, Xianda, Yang, Xi, Ma, Shaodan, Zhou, Binggui, Yang, Guanghua. Hybrid Channel Estimation for UPA-Assisted Millimeter-Wave Massive MIMO IoT Systems[J]. IEEE Internet of Things Journal, 2022, 9(4), 2829-2842.
Authors:  Wu, Xianda;  Yang, Xi;  Ma, Shaodan;  Zhou, Binggui;  Yang, Guanghua
Favorite | TC[WOS]:21 TC[Scopus]:30  IF:8.2/9.0 | Submit date:2022/03/04
Channel Estimation  Compressed Sensing (Cs)  Massive Multiple-input-multiple-output (Mimo)  Millimeter-wave (Mmwave)  Sparse Bayesian Learning (Sbl)  
A Novel Multiple Feature-Based Engine Knock Detection System using Sparse Bayesian Extreme Learning Machine Journal article
Yang, Zhao Xu, Rong, Hai Jun, Wong, Pak Kin, Angelov, Plamen, Vong, Chi Man, Chiu, Chi Wai, Yang, Zhi Xin. A Novel Multiple Feature-Based Engine Knock Detection System using Sparse Bayesian Extreme Learning Machine[J]. Cognitive Computation, 2022, 14(2), 828-851.
Authors:  Yang, Zhao Xu;  Rong, Hai Jun;  Wong, Pak Kin;  Angelov, Plamen;  Vong, Chi Man; et al.
Favorite | TC[WOS]:15 TC[Scopus]:11  IF:4.3/4.0 | Submit date:2022/05/13
Engine Knock Detection  Multiple Feature Learning  Sample Entropy  Sparse Bayesian Extreme Learning Machine  Variational Mode Decomposition  
Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors Journal article
Luo, Jiahua, Gan, Yanfen, Vong, Chi Man, Wong, Chi Man, Chen, Chuangquan. Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors[J]. Neurocomputing, 2021, 457, 106-116.
Authors:  Luo, Jiahua;  Gan, Yanfen;  Vong, Chi Man;  Wong, Chi Man;  Chen, Chuangquan
Favorite | TC[WOS]:4 TC[Scopus]:6  IF:5.5/5.5 | Submit date:2021/12/08
Approximate Bayesian Regularization Priors  Relevance Vector Machine  Scalable Sparse Bayesian Learning  Sparse Bayesian Extreme Learning Machine  
Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors Journal article
Luo, J.H., Gan, Y.F., Vong, C. M., Wong, C.M., Chen, C.Q.. Scalable and memory-efficient sparse learning for classification with approximate Bayesian regularization priors[J]. Neurocomputing (SCI-E), 2021, 106-116.
Authors:  Luo, J.H.;  Gan, Y.F.;  Vong, C. M.;  Wong, C.M.;  Chen, C.Q.
Favorite |   IF:5.5/5.5 | Submit date:2022/08/09
Scalable Sparse Bayesian Learning  Approximate Bayesian Regularization Priors  Relevance Vector Machine  Sparse Bayesian Extreme Learning Machine  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, Jiahua, Vong, Chi Man, Liu, Zhenbao, Chen, Chuangquan. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Access, 2021, 9, 87543-87551.
Authors:  Luo, Jiahua;  Vong, Chi Man;  Liu, Zhenbao;  Chen, Chuangquan
Favorite | TC[WOS]:2 TC[Scopus]:2  IF:3.4/3.7 | Submit date:2022/05/13
Inverse-free  Large Classification  Quasi-newton Method  Sparse Bayesian Extreme Learning Machine  Sparse Model  
An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems Journal article
Luo, J.H., Vong, C. M., Liu, Z.B., Chen, C.Q.. An Inverse-Free and Scalable Sparse Bayesian Extreme Learning Machine for Classification Problems[J]. IEEE Acess (SCI-E), 2021, 1-9.
Authors:  Luo, J.H.;  Vong, C. M.;  Liu, Z.B.;  Chen, C.Q.
Favorite |   IF:3.4/3.7 | Submit date:2022/08/09
Inverse-free  quasi-Newton method  sparse Bayesian extreme learning machine  large classification  sparse model