UM

Browse/Search Results:  1-9 of 9 Help

Selected(0)Clear Items/Page:    Sort:
The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight Journal article
Wang, Yuxi, Chen, Yang. The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight[J]. Applied Mathematics and Computation, 2024, 474, 128615.
Authors:  Wang, Yuxi;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:3.5/3.1 | Submit date:2024/05/16
Asymptotics  Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT[J]. Mathematical Inequalities and Applications, 2024, 27(1), 53-62.
Authors:  Wang, Dan;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.9/0.8 | Submit date:2024/05/16
Asymptotics  Hankel Matrices  Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT Journal article
Wang, Yuxi, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT[J]. Proceedings of the American Mathematical Society, 2023, 151(12), 5345-5352.
Authors:  Wang, Yuxi;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:0.8/0.8 | Submit date:2024/01/02
Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT Journal article
Wang, Dan, Zhu, Mengkun, Chen, Yang. THE SMALLEST EIGENVALUE of LARGE HANKEL MATRICES ASSOCIATED with A SINGULARLY PERTURBED GAUSSIAN WEIGHT[J]. Proceedings of the American Mathematical Society, 2022, 150(1), 153-160.
Authors:  Wang, Dan;  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:5 TC[Scopus]:4  IF:0.8/0.8 | Submit date:2022/05/17
Asymptotics  Hankel Matrices  Orthogonal Polynomials  Smallest Eigenvalue  
The smallest eigenvalue distribution of the Jacobi unitary ensembles Journal article
Lyu, Shulin, Chen, Yang. The smallest eigenvalue distribution of the Jacobi unitary ensembles[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44(13), 10121-10134.
Authors:  Lyu, Shulin;  Chen, Yang
Favorite | TC[WOS]:0 TC[Scopus]:0  IF:2.1/2.0 | Submit date:2021/12/08
Asymptotic Expansions  Bessel Kernel  Fredholm Determinant  Jacobi Unitary Ensemble  Smallest Eigenvalue Distribution  
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation Journal article
Chen,Yang, Sikorowski,J., Zhu,Mengkun. Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363, 124628.
Authors:  Chen,Yang;  Sikorowski,J.;  Zhu,Mengkun
Favorite | TC[WOS]:7 TC[Scopus]:5  IF:3.5/3.1 | Submit date:2021/03/09
Extremely Ill-conditioned Hankel Matrices  Parallel Eigensolver  Random Matrix  Smallest Eigenvalue  
The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble Journal article
Lyu, Shulin, Griffin, James, Chen, Yang. The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble[J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26(1), 24-53.
Authors:  Lyu, Shulin;  Griffin, James;  Chen, Yang
Favorite | TC[WOS]:9 TC[Scopus]:9  IF:1.4/1.0 | Submit date:2019/01/17
Hankel Determinant  Smallest Eigenvalue  Double Scaling  
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight Journal article
Mengkun Zhu, Niall Emmart, Yang Chen, Charles Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(9), 3272-3288.
Authors:  Mengkun Zhu;  Niall Emmart;  Yang Chen;  Charles Weems
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2019/05/31
Asymptotics  Hankel Matrices  Random Matrix  Smallest Eigenvalue  Orthogonal Polynomials  
The smallest eigenvalue of large Hankel matrices Journal article
Zhu, Mengkun, Chen, Yang, Emmart, Niall, Weems, Charles. The smallest eigenvalue of large Hankel matrices[J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 334, 375-387.
Authors:  Zhu, Mengkun;  Chen, Yang;  Emmart, Niall;  Weems, Charles
Favorite | TC[WOS]:8 TC[Scopus]:9  IF:3.5/3.1 | Submit date:2018/10/30
Asymptotics  Smallest Eigenvalue  Hankel Matrices  Orthogonal Polynomials  Parallel Algorithm