×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [9]
Authors
SUN HAIWEI [7]
Document Type
Journal article [9]
Date Issued
2020 [4]
2015 [1]
2014 [1]
2012 [1]
2011 [1]
2010 [1]
More...
Language
英語English [9]
Source Publication
Journal of Appli... [2]
Numerical Linear... [2]
East Asian Journ... [1]
Journal of Compu... [1]
Journal of Scien... [1]
JournalofScienti... [1]
More...
Indexed By
SCIE [7]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-9 of 9
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Issue Date Ascending
Issue Date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Exponential Runge–Kutta Methodfor Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations
Journal article
Zhang, L., Zhang, Q.F., Sun, H. W.. Exponential Runge–Kutta Methodfor Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations[J]. JournalofScientificComputing, 2020, UNSP59-UNSP59.
Authors:
Zhang, L.
;
Zhang, Q.F.
;
Sun, H. W.
Favorite
|
IF:
2.8
/
2.7
|
Submit date:2022/07/25
Space fractional Ginzburg–Landau equation
Toeplitz structure
Exponential Runge–Kutta method
Matrix exponential
Shift-invert Lanczos method
Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations
Journal article
Zhang,Lu, Zhang,Qifeng, Sun,Hai Wei. Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations[J]. Journal of Scientific Computing, 2020, 83(3).
Authors:
Zhang,Lu
;
Zhang,Qifeng
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
27
TC[Scopus]:
29
IF:
2.8
/
2.7
|
Submit date:2021/03/09
Exponential Runge–kutta Method
Matrix Exponential
Shift-invert Lanczos Method
Space Fractional Ginzburg–landau Equation
Toeplitz Structure
Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method
Journal article
Zhang, L., Sun, H. W.. Numerical solution for multi-dimensional Rieszfractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 449-472.
Authors:
Zhang, L.
;
Sun, H. W.
Favorite
|
TC[WOS]:
9
TC[Scopus]:
10
IF:
2.4
/
2.3
|
Submit date:2022/07/25
Riesz Fractional Reaction–diffusion Equation·toeplitz Structure
Exponential Runge–kutta Method
Matrix Exponential
Shift-invert Lanczos Method
Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method
Journal article
Zhang,Lu, Sun,Hai Wei. Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method[J]. Journal of Applied Mathematics and Computing, 2020, 62(1-2), 449-472.
Authors:
Zhang,Lu
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
9
TC[Scopus]:
10
IF:
2.4
/
2.3
|
Submit date:2021/03/09
Exponential Runge–kutta Method
Matrix Exponential
Riesz Fractional Reaction–diffusion Equation
Shift-invert Lanczos Method
Toeplitz Structure
Fast numerical solution for fractional diffusion equations by exponential quadrature rule
Journal article
Zhang,Lu, Sun,Hai Wei, Pang,Hong Kui. Fast numerical solution for fractional diffusion equations by exponential quadrature rule[J]. Journal of Computational Physics, 2015, 299, 130-143.
Authors:
Zhang,Lu
;
Sun,Hai Wei
;
Pang,Hong Kui
Favorite
|
TC[WOS]:
25
TC[Scopus]:
26
|
Submit date:2019/05/27
Exponential Quadrature Rule
Fractional Diffusion Equation
Matrix Exponential
Preconditioned Gmres
Shift-invert Arnoldi
Toeplitz-like Structure
Fast exponential time integration for pricing options in stochastic volatility jump diffusion models
Journal article
Pang,Hong Kui, Sun,Hai Wei. Fast exponential time integration for pricing options in stochastic volatility jump diffusion models[J]. East Asian Journal on Applied Mathematics, 2014, 4(1), 52-68.
Authors:
Pang,Hong Kui
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
13
TC[Scopus]:
13
|
Submit date:2019/05/27
Barrier Option
European Option
Matrix Exponential
Matrix Splitting
Multigrid Method
Partial Integrodifferential Equation
Shift-invert Arnoldi
Stochastic Volatility Jump Diffusion
Fast exponential time integration scheme for option pricing with jumps
Journal article
Lee,Spike T., Liu,Xin, Sun,Hai Wei. Fast exponential time integration scheme for option pricing with jumps[J]. Numerical Linear Algebra with Applications, 2012, 19(1), 87-101.
Authors:
Lee,Spike T.
;
Liu,Xin
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
17
TC[Scopus]:
17
|
Submit date:2019/05/27
Generating Function
Jump-diffusion
Option Pricing
Shift-and-invert Arnoldi Method
Toeplitz Matrix Exponential
Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential
Journal article
Pang,Hong Kui, Sun,Hai Wei. Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential[J]. Numerical Linear Algebra with Applications, 2011, 18(3), 603-614.
Authors:
Pang,Hong Kui
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
23
TC[Scopus]:
23
|
Submit date:2019/05/27
Gohberg-semencul Formula
Krylov Subspace
Lanczos Method
Matrix Exponential
Shift-invert
Toeplitz
Shift-invert arnoldi approximation to the toeplitz matrix exponential
Journal article
Lee,Spike T., Pang,Hong Kui, Sun,Hai Wei. Shift-invert arnoldi approximation to the toeplitz matrix exponential[J]. SIAM Journal on Scientific Computing, 2010, 32(2), 774-792.
Authors:
Lee,Spike T.
;
Pang,Hong Kui
;
Sun,Hai Wei
Favorite
|
TC[WOS]:
48
TC[Scopus]:
49
|
Submit date:2019/05/27
Krylov Subspace
Matrix Exponential
Numerical Range
Shift-invert Arnoldi Method
Toeplitz Matrix