UM

Browse/Search Results:  1-3 of 3 Help

Selected(0)Clear Items/Page:    Sort:
Heterogeneity-Aware Coordination for Federated Learning via Stitching Pre-trained blocks Conference paper
Zhan, Shichen, Wu, Yebo, Tian, Chunlin, Zhao, Yan, Li, Li. Heterogeneity-Aware Coordination for Federated Learning via Stitching Pre-trained blocks[C]:Institute of Electrical and Electronics Engineers Inc., 2024.
Authors:  Zhan, Shichen;  Wu, Yebo;  Tian, Chunlin;  Zhao, Yan;  Li, Li
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2024/11/05
Federated Learning  Pre-training  Resource-efficient  Training  Performance Evaluation  Energy Consumption  Accuracy  Memory Management  Quality Of Service  
Filling the Missing: Exploring Generative AI for Enhanced Federated Learning over Heterogeneous Mobile Edge Devices Journal article
Li Peichun, Zhang Hanwen, Wu Yuan, Qian Liping, Yu Rong, Niyato Dusit, Shen Xuemin. Filling the Missing: Exploring Generative AI for Enhanced Federated Learning over Heterogeneous Mobile Edge Devices[J]. IEEE Transactions on Mobile Computing, 2024, 23(10), 10001 - 10015.
Authors:  Li Peichun;  Zhang Hanwen;  Wu Yuan;  Qian Liping;  Yu Rong; et al.
Favorite | TC[WOS]:3 TC[Scopus]:9  IF:7.7/6.5 | Submit date:2024/05/16
Convergence  Data Compensation  Data Models  Energy Consumption  Federated Learning  Generative Ai  Generative Ai  Optimization  Performance Evaluation  Resource Management  Training  
An algorithm of resource evaluation and selection based on multi-QoS constraints Conference paper
Zhou J., Yan M., Ye X., Lu H.. An algorithm of resource evaluation and selection based on multi-QoS constraints[C], 2010, 49-52.
Authors:  Zhou J.;  Yan M.;  Ye X.;  Lu H.
Favorite | TC[Scopus]:3 | Submit date:2018/12/22
Grid  Madm  Multi-qos Constraints  Resource Evaluation  Resource Selection