UM

Browse/Search Results:  1-10 of 16 Help

Selected(0)Clear Items/Page:    Sort:
Diffusion Recommendation with Implicit Sequence Influence Conference paper
Niu, Yong, Xing, Xing, Jia, Zhichun, Liu, Ruidi, Xin, Mindong, Cui, Jianfu. Diffusion Recommendation with Implicit Sequence Influence[C], New York, NY, USA:Association for Computing Machinery, 2024, 1719-1725.
Authors:  Niu, Yong;  Xing, Xing;  Jia, Zhichun;  Liu, Ruidi;  Xin, Mindong; et al.
Favorite | TC[Scopus]:0 | Submit date:2024/06/05
Diffusion Model  Implicit Influence  Recommender System  
Sparse Enhanced Network: An Adversarial Generation Method for Robust Augmentation in Sequential Recommendation Conference paper
Chen, Junyang, Zou, Guoxuan, Zhou, Pan, Yirui, Wu, Chen, Zhenghan, Su, Houcheng, Wang, Huan, Gong, Zhiguo. Sparse Enhanced Network: An Adversarial Generation Method for Robust Augmentation in Sequential Recommendation[C], 2024, 8283-8291.
Authors:  Chen, Junyang;  Zou, Guoxuan;  Zhou, Pan;  Yirui, Wu;  Chen, Zhenghan; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1 | Submit date:2024/05/16
Dmkm: Graph Mining, Social Network Analysis & Community  Dmkm: Anomaly/outlier Detection  Dmkm: Recommender Systems  Ml: Deep Learning Algorithms  Ml: Deep Learning Theory  Ml: Graph-based Machine Learning  Ml: Semi-supervised Learning  Ml: Transparent, Interpretable, Explainable Ml  Ml: Unsupervised & Self-supervised Learning  
Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation Conference paper
Zhang, Zhaofan, Xiao, Yanan, Jiang, Lu, Yang, Dingqi, Yin, Minghao, Wang, Pengyang. Spatial-Temporal Interplay in Human Mobility: A Hierarchical Reinforcement Learning Approach with Hypergraph Representation[C], 2024, 9396-9404.
Authors:  Zhang, Zhaofan;  Xiao, Yanan;  Jiang, Lu;  Yang, Dingqi;  Yin, Minghao; et al.
Favorite | TC[WOS]:1 TC[Scopus]:5 | Submit date:2024/05/16
Dmkm: Mining Of Spatial  TempOral Or spatio-TempOral Data  Dmkm: Recommender Systems  
A Deep Reinforcement Learning Recommender System With Multiple Policies for Recommendations Journal article
Mingsheng Fu, Liwei Huang, Ananya Rao, Athirai A. Irissappane, Jie Zhang, Hong Qu. A Deep Reinforcement Learning Recommender System With Multiple Policies for Recommendations[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2), 2049-2061.
Authors:  Mingsheng Fu;  Liwei Huang;  Ananya Rao;  Athirai A. Irissappane;  Jie Zhang; et al.
Favorite | TC[WOS]:6 TC[Scopus]:7  IF:11.7/11.4 | Submit date:2023/02/22
Deep Reinforcement Learning (Drl)  Multitask Markov Decision Process (Mdp)  Recommender System  
Meta-path Based Neighbors for Behavioral Target Generalization in Sequential Recommendation Journal article
Chen, Junyang, Gong, Zhiguo, Li, Yuanman, Zhang, Huanjian, Yu, Hongyong, Zhu, Junzhang, Fan, Ge, Wu, Xiao Ming, Wu, Kaishun. Meta-path Based Neighbors for Behavioral Target Generalization in Sequential Recommendation[J]. IEEE Transactions on Network Science and Engineering, 2022, 9(3), 1658-1667.
Authors:  Chen, Junyang;  Gong, Zhiguo;  Li, Yuanman;  Zhang, Huanjian;  Yu, Hongyong; et al.
Favorite | TC[WOS]:15 TC[Scopus]:19  IF:6.7/6.0 | Submit date:2022/05/17
Behavioral Target Generalization  Sequential Recommendation  Ctr Prediction  Recommender Systems  
Field-aware Variational Autoencoders for Billion-scale User Representation Learning Conference paper
Ge Fan, Chaoyun Zhang, Junyang Chen, Baopu Li, Zenglin Xu, Yingjie Li, Luyu Peng, Zhiguo Gong. Field-aware Variational Autoencoders for Billion-scale User Representation Learning[C], 2022, 3413-3425.
Authors:  Ge Fan;  Chaoyun Zhang;  Junyang Chen;  Baopu Li;  Zenglin Xu; et al.
Favorite | TC[WOS]:5 TC[Scopus]:7 | Submit date:2022/08/29
Lookalike Systems  Recommender Systems  User Representation Learning  Variational Autoencoder  
DCRS: a deep contrast reciprocal recommender system to simultaneously capture user interest and attractiveness for online dating Journal article
Linhao Luo, Xiaofeng Zhang, Xiaoyun Chen, Kai Liu, Dan Peng, Xiaofei Yang. DCRS: a deep contrast reciprocal recommender system to simultaneously capture user interest and attractiveness for online dating[J]. Neural Computing and Applications, 2022, 34(8), 6413-6425.
Authors:  Linhao Luo;  Xiaofeng Zhang;  Xiaoyun Chen;  Kai Liu;  Dan Peng; et al.
Favorite | TC[WOS]:1 TC[Scopus]:1  IF:4.5/4.7 | Submit date:2022/05/04
Graph Embedding  Online Dating  Reciprocal Recommendation  Recommender System  
Improving Conversational Recommender System by Pretraining Billion-scale Knowledge Graph Conference paper
Chi-Man Wong, Fan Feng, Wen Zhang, Chi-Man Vong, Hui Chen, Yichi Zhang, Peng He, Huan Chen, Kun Zhao, Huajun Chen. Improving Conversational Recommender System by Pretraining Billion-scale Knowledge Graph[C]:IEEE, 2021, 2607-2612.
Authors:  Chi-Man Wong;  Fan Feng;  Wen Zhang;  Chi-Man Vong;  Hui Chen; et al.
Favorite | TC[WOS]:19 TC[Scopus]:32 | Submit date:2022/08/09
Conversational Recommender Systems (Crs)  Click-through Rate (Ctr)  K-dcn  
GCNNIRec: Graph Convolutional Networks with Neighbor Complex Interactions for Recommendation Conference paper
Mei, Teng, Sun, Tianhao, Chen, Renqin, Zhou, Mingliang, U, Leong Hou. GCNNIRec: Graph Convolutional Networks with Neighbor Complex Interactions for Recommendation[C]. U L.H., Spaniol M., Sakurai Y., Chen J., BERLIN, GERMANY:Springer Science and Business Media Deutschland GmbH, 2021, 338-347.
Authors:  Mei, Teng;  Sun, Tianhao;  Chen, Renqin;  Zhou, Mingliang;  U, Leong Hou
Favorite | TC[WOS]:0 TC[Scopus]:1 | Submit date:2022/05/13
Recommender System  Graph Neural Networks  Neighbor Interactions  
A common topic transfer learning model for crossing city POI recommendations Journal article
Dichao Li, Zhiguo Gong, Defu Zhang. A common topic transfer learning model for crossing city POI recommendations[J]. IEEE Transactions on Cybernetics, 2019, 49(12), 4282-4295.
Authors:  Dichao Li;  Zhiguo Gong;  Defu Zhang
Favorite | TC[WOS]:23 TC[Scopus]:24  IF:9.4/10.3 | Submit date:2021/03/09
Graphical Models  Machine Learning  Recommender Systems  Transfer Learning