UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation Journal article
Chen,Yang, Sikorowski,J., Zhu,Mengkun. Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation[J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 363, 124628.
Authors:  Chen,Yang;  Sikorowski,J.;  Zhu,Mengkun
Favorite | TC[WOS]:7 TC[Scopus]:5  IF:3.5/3.1 | Submit date:2021/03/09
Extremely Ill-conditioned Hankel Matrices  Parallel Eigensolver  Random Matrix  Smallest Eigenvalue  
Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight Journal article
Min, Chao, Chen, Yang. Painlevé transcendents and the Hankel determinants generated by a discontinuous Gaussian weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(1), 301-321.
Authors:  Min, Chao;  Chen, Yang
Favorite | TC[WOS]:18 TC[Scopus]:16  IF:2.1/2.0 | Submit date:2019/01/17
Asymptotics  Hankel Determinants  Ladder Operators  Orthogonal Polynomials  Painleve Transcendents  Random Matrices  
On properties of a deformed Freud weight Journal article
Zhu, Mengkun, Chen, Yang. On properties of a deformed Freud weight[J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2019, 8(1).
Authors:  Zhu, Mengkun;  Chen, Yang
Favorite | TC[WOS]:14 TC[Scopus]:11  IF:0.9/0.9 | Submit date:2019/01/17
Deformed Freud Weight  Unitary Random Matrices  Hankel Determinant  Discrete And Continuous Painleve Equation  Integrable Systems  
The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight Journal article
Mengkun Zhu, Niall Emmart, Yang Chen, Charles Weems. The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42(9), 3272-3288.
Authors:  Mengkun Zhu;  Niall Emmart;  Yang Chen;  Charles Weems
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:2.1/2.0 | Submit date:2019/05/31
Asymptotics  Hankel Matrices  Random Matrix  Smallest Eigenvalue  Orthogonal Polynomials  
Asymptotic gap probability distributions of the Gaussain unitary ensembles and Jacobi Unitary emsebles Journal article
Lyu, S, Chen, Y., Fan, E. Asymptotic gap probability distributions of the Gaussain unitary ensembles and Jacobi Unitary emsebles[J]. Nuclear Physics B, 2018, 639-670.
Authors:  Lyu, S;  Chen, Y.;  Fan, E
Favorite |  | Submit date:2022/06/27
Random matrices  Unitary ensembles  Painleve equations  
Linear statistics of matrix ensembles in classical background Journal article
Min C., Chen Y.. Linear statistics of matrix ensembles in classical background[J]. Mathematical Methods in the Applied Sciences, 2016, 39(13), 3758-3790.
Authors:  Min C.;  Chen Y.
Favorite | TC[WOS]:5 TC[Scopus]:6 | Submit date:2019/02/12
Asymptotics  Linear Spectral Statistics  Orthogonal Polynomials  Random Matrices  
Large N-limit for random matrices with external source with three distinct eigenvalues Journal article
Jian Xu, Engui Fan, Yang Chen. Large N-limit for random matrices with external source with three distinct eigenvalues[J]. Random Matrices-Theory and Applications, 2016, 5(2), 1650005.
Authors:  Jian Xu;  Engui Fan;  Yang Chen
Favorite | TC[WOS]:4 TC[Scopus]:2  IF:0.9/0.9 | Submit date:2019/06/03
Riemann–hilbert Problem  Large N-limit  Random Matrices  Multiple Orthogonal Polynomi-als  
Journal of Approximation Theory Journal article
Basor, E., Chen, Y., Haq, N.. Journal of Approximation Theory[J]. Journal of Approximation Theory, 2015, 63-110.
Authors:  Basor, E.;  Chen, Y.;  Haq, N.
Favorite |   IF:0.9/0.9 | Submit date:2022/06/27
Random Matrices  Orthogonal Polynomials  Painleve equations  
Continuous and Discrete Painlevé Equations Arising from the Gap Probability Distribution of the Finite n Gaussian Unitary Ensembles Journal article
Man Cao, Yang Chen, James Griffin. Continuous and Discrete Painlevé Equations Arising from the Gap Probability Distribution of the Finite n Gaussian Unitary Ensembles[J]. Journal of Statistical Physics, 2014, 157(2), 363-375.
Authors:  Man Cao;  Yang Chen;  James Griffin
Favorite | TC[WOS]:7 TC[Scopus]:7  IF:1.3/1.5 | Submit date:2019/02/12
Gap Probability  Painlevé Equations  Random Matrices  
Random matrix models, double-time Painlev\'e equations, and wireless relaying Journal article
Chen, Y., Haq, N., McKay, M.. Random matrix models, double-time Painlev\'e equations, and wireless relaying[J]. Journal of Mathematical Physics, 2013, 063506-1-063506-55.
Authors:  Chen, Y.;  Haq, N.;  McKay, M.
Favorite | TC[WOS]:22 TC[Scopus]:24 | Submit date:2022/06/27
Random Matrices  Wireless Communications