UM

Browse/Search Results:  1-4 of 4 Help

Selected(0)Clear Items/Page:    Sort:
Sampling formulas for non-bandlimited quaternionic signals Journal article
Xiaoxiao Hu, Kit Ian Kou. Sampling formulas for non-bandlimited quaternionic signals[J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16(6), 1559-1567.
Authors:  Xiaoxiao Hu;  Kit Ian Kou
Favorite | TC[WOS]:4 TC[Scopus]:4  IF:2.0/1.8 | Submit date:2022/05/17
Quaternion Fourier Transform  Quaternion Linear Canonical Transform  Non-bandlimited Quaternionic Signal  
Uncertainty principles associated with quaternionic linear canonical transforms Journal article
Kou K.I., Ou J., Morais J.. Uncertainty principles associated with quaternionic linear canonical transforms[J]. Mathematical Methods in the Applied Sciences, 2016, 39(10), 2722-2736.
Authors:  Kou K.I.;  Ou J.;  Morais J.
Favorite | TC[WOS]:30 TC[Scopus]:36 | Submit date:2019/02/13
Gaussian Quaternionic Signal  Hypercomplex Functions  Quantum Mechanics  Quaternion Analysis  Quaternionic Fourier Transform  Quaternionic Linear Canonical Transform  Uncertainly Principle  
Asymptotic Behaviour of the Quaternion Linear Canonical Tlansform and the Bochner-Minlos Theorem Journal article
Kou, K. I., Morais, J.. Asymptotic Behaviour of the Quaternion Linear Canonical Tlansform and the Bochner-Minlos Theorem[J]. Applied Mathematics and Computation, 2014, 675-688.
Authors:  Kou, K. I.;  Morais, J.
Favorite |   IF:3.5/3.1 | Submit date:2022/08/24
Quaternionic analysis  Quaternion linear canonical transform  Asymptotic behaviour  Positive definitely measure  Bochner–Minlos theorem  
Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem Journal article
Kou K.I., Morais J.. Asymptotic behaviour of the quaternion linear canonical transform and the Bochner-Minlos theorem[J]. Applied Mathematics and Computation, 2014, 247, 675-688.
Authors:  Kou K.I.;  Morais J.
Favorite | TC[WOS]:51 TC[Scopus]:61 | Submit date:2019/02/13
Asymptotic Behaviour  Bochner-minlos Theorem  Positive Definitely Measure  Quaternion Linear Canonical Transform  Quaternionic Analysis