×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
TI
AU
PY
SU
KW
TY
JN
DA
IN
PB
FP
ST
SM
Study Hall
Image search
Paste the image URL
Home
Faculties & Institutes
Scholars
Publications
Subjects
Statistics
News
Search in the results
Faculties & Institutes
Faculty of Scien... [7]
Authors
KOU KIT IAN [6]
Document Type
Journal article [15]
Date Issued
2018 [2]
2016 [5]
2015 [5]
2014 [3]
Language
英語English [15]
Source Publication
Mathematical Met... [9]
Applied Mathemat... [2]
Wave Motion [2]
Journal of Mathe... [1]
MATHEMATICAL MET... [1]
Indexed By
SCIE [9]
Funding Organization
Funding Project
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 15
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Journal Impact Factor Ascending
Journal Impact Factor Descending
Title Ascending
Title Descending
Author Ascending
Author Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Prolate spheroidal wave functions associated with the quaternionic Fourier transform
Journal article
Zou,Cuiming, Kou,Kit Ian, Morais,Joao. Prolate spheroidal wave functions associated with the quaternionic Fourier transform[J]. Mathematical Methods in the Applied Sciences, 2018, 41(11), 4003-4020.
Authors:
Zou,Cuiming
;
Kou,Kit Ian
;
Morais,Joao
Favorite
|
TC[WOS]:
3
TC[Scopus]:
7
IF:
2.1
/
2.0
|
Submit date:2021/03/11
Bandlimited Extrapolation
Mathieu Functions
Quaternionic Analysis
Quaternionic Fourier Transform
Quaternionic Signal
The Energy Concentration Problem
Prolate spheroidal wave functions associated with the quaternionic Fourier transform
Journal article
Zou, Cuiming, Kou, Kit Ian, Morais, Joao. Prolate spheroidal wave functions associated with the quaternionic Fourier transform[J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41(11), 4003-4020.
Authors:
Zou, Cuiming
;
Kou, Kit Ian
;
Morais, Joao
Favorite
|
TC[WOS]:
3
TC[Scopus]:
7
IF:
2.1
/
2.0
|
Submit date:2018/10/30
Quaternionic Analysis
Quaternionic Fourier Transform
Quaternionic Signal
The Energy Concentration Problem
Mathieu Functions
Bandlimited Extrapolation
Constructing prolate spheroidal quaternion wave functions on the sphere
Journal article
Morais,Joao, Kou,Kit Ian. Constructing prolate spheroidal quaternion wave functions on the sphere[J]. Mathematical Methods in the Applied Sciences, 2016, 39(14), 3961-3978.
Authors:
Morais,Joao
;
Kou,Kit Ian
Favorite
|
TC[WOS]:
4
TC[Scopus]:
6
IF:
2.1
/
2.0
|
Submit date:2021/03/11
30c65
Prolate Spheroidal Wave Functions
Quaternionic Analysis
Quaternionic Fourier Transform
Quaternionic Functions
Spherical Harmonics
Subclass 30g35
The Energy Concentration Problem
Constructing prolate spheroidal quaternion wave functions on the sphere
Journal article
Morais J., Kou K.I.. Constructing prolate spheroidal quaternion wave functions on the sphere[J]. Mathematical Methods in the Applied Sciences, 2016, 39(14), 3961-3978.
Authors:
Morais J.
;
Kou K.I.
Favorite
|
TC[WOS]:
4
TC[Scopus]:
6
|
Submit date:2019/02/13
30c65
Prolate Spheroidal Wave Functions
Quaternionic Analysis
Quaternionic Fourier Transform
Quaternionic Functions
Spherical Harmonics
Subclass 30g35
The Energy Concentration Problem
Uncertainty principles associated with quaternionic linear canonical transforms
Journal article
Kou K.I., Ou J., Morais J.. Uncertainty principles associated with quaternionic linear canonical transforms[J]. Mathematical Methods in the Applied Sciences, 2016, 39(10), 2722-2736.
Authors:
Kou K.I.
;
Ou J.
;
Morais J.
Favorite
|
TC[WOS]:
30
TC[Scopus]:
36
|
Submit date:2019/02/13
Gaussian Quaternionic Signal
Hypercomplex Functions
Quantum Mechanics
Quaternion Analysis
Quaternionic Fourier Transform
Quaternionic Linear Canonical Transform
Uncertainly Principle
On 3D orthogonal prolate spheroidal monogenics
Journal article
Morais,J., Nguyen,H. M., Kou,K. I.. On 3D orthogonal prolate spheroidal monogenics[J]. Mathematical Methods in the Applied Sciences, 2016, 39(4), 635-648.
Authors:
Morais,J.
;
Nguyen,H. M.
;
Kou,K. I.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
9
IF:
2.1
/
2.0
|
Submit date:2021/03/11
Ferrer's Associated Legendre Functions
Hyperbolic Functions
Prolate Spheroidal Harmonics
Prolate Spheroidal Monogenics
Quaternionic Analysis
Riesz System
On 3D orthogonal prolate spheroidal monogenics
Journal article
Morais J., Nguyen H.M., Kou K.I.. On 3D orthogonal prolate spheroidal monogenics[J]. Mathematical Methods in the Applied Sciences, 2016, 39(4), 635-648.
Authors:
Morais J.
;
Nguyen H.M.
;
Kou K.I.
Favorite
|
TC[WOS]:
5
TC[Scopus]:
9
|
Submit date:2019/02/13
Ferrer's Associated Legendre Functions
Hyperbolic Functions
Prolate Spheroidal Harmonics
Prolate Spheroidal Monogenics
Quaternionic Analysis
Riesz System
Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders
Journal article
Morais, J., Kou, K. I., Le, H. T. . Generalized holornorphic orthogonal fìrnction systenrs over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 2574-2588.
Authors:
Morais, J.
;
Kou, K. I.
;
Le, H. T.
Favorite
|
|
Submit date:2022/08/27
quaternionic analysis
Bessel functions
Chebyshev polynomials
hyperbolic functions
cylindrical harmonics
generalized cylindrical holomorphics
Generalized holomorphic orthogonal function systems over infinite cylinders
Journal article
Morais,J., Kou,K. I., Le,H. T.. Generalized holomorphic orthogonal function systems over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 38(12), 2574-2588.
Authors:
Morais,J.
;
Kou,K. I.
;
Le,H. T.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
3
IF:
2.1
/
2.0
|
Submit date:2021/03/11
Bessel Functions
Chebyshev Polynomials
Cylindrical Harmonics
Generalized Cylindrical Holomorphics
Hyperbolic Functions
Quaternionic Analysis
Generalized holomorphic orthogonal function systems over infinite cylinders
Journal article
Morais J., Kou K.I., Le H.T.. Generalized holomorphic orthogonal function systems over infinite cylinders[J]. Mathematical Methods in the Applied Sciences, 2015, 38(12), 2574-2588.
Authors:
Morais J.
;
Kou K.I.
;
Le H.T.
Favorite
|
TC[WOS]:
1
TC[Scopus]:
3
|
Submit date:2019/02/13
Bessel Functions
Chebyshev Polynomials
Cylindrical Harmonics
Generalized Cylindrical Holomorphics
Hyperbolic Functions
Quaternionic Analysis